Daniel@0: function L = log_prob_node(CPD, self_ev, pev) Daniel@0: % LOG_PROB_NODE Compute prod_m log P(x(i,m)| x(pi_i,m), theta_i) for node i (gaussian) Daniel@0: % L = log_prob_node(CPD, self_ev, pev) Daniel@0: % Daniel@0: % self_ev(m) is the evidence on this node in case m. Daniel@0: % pev(i,m) is the evidence on the i'th parent in case m (if there are any parents). Daniel@0: % (These may also be cell arrays.) Daniel@0: Daniel@0: if iscell(self_ev), usecell = 1; else usecell = 0; end Daniel@0: Daniel@0: use_log = 1; Daniel@0: ncases = length(self_ev); Daniel@0: nparents = length(CPD.sizes)-1; Daniel@0: assert(ncases == size(pev, 2)); Daniel@0: Daniel@0: if ncases == 0 Daniel@0: L = 0; Daniel@0: return; Daniel@0: end Daniel@0: Daniel@0: L = 0; Daniel@0: for m=1:ncases Daniel@0: if isempty(CPD.dps) Daniel@0: i = 1; Daniel@0: else Daniel@0: if usecell Daniel@0: dpvals = cat(1, pev{CPD.dps, m}); Daniel@0: else Daniel@0: dpvals = pev(CPD.dps, m); Daniel@0: end Daniel@0: i = subv2ind(CPD.sizes(CPD.dps), dpvals(:)'); Daniel@0: end Daniel@0: if usecell Daniel@0: y = self_ev{m}; Daniel@0: else Daniel@0: y = self_ev(m); Daniel@0: end Daniel@0: if length(CPD.cps) == 0 Daniel@0: L = L + gaussian_prob(y, CPD.mean(:,i), CPD.cov(:,:,i), use_log); Daniel@0: else Daniel@0: if usecell Daniel@0: x = cat(1, pev{CPD.cps, m}); Daniel@0: else Daniel@0: x = pev(CPD.cps, m); Daniel@0: end Daniel@0: L = L + gaussian_prob(y, CPD.mean(:,i) + CPD.weights(:,:,i)*x, CPD.cov(:,:,i), use_log); Daniel@0: end Daniel@0: end Daniel@0: