Daniel@0: function lam_msg = CPD_to_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence) Daniel@0: % CPD_TO_LAMBDA_MSG Compute lambda message (gaussian) Daniel@0: % lam_msg = compute_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence) Daniel@0: % Pearl p183 eq 4.52 Daniel@0: Daniel@0: switch msg_type Daniel@0: case 'd', Daniel@0: error('gaussian_CPD can''t create discrete msgs') Daniel@0: case 'g', Daniel@0: cps = ps(CPD.cps); Daniel@0: cpsizes = CPD.sizes(CPD.cps); Daniel@0: self_size = CPD.sizes(end); Daniel@0: i = find_equiv_posns(p, cps); % p is n's i'th cts parent Daniel@0: psz = cpsizes(i); Daniel@0: if all(msg{n}.lambda.precision == 0) % no info to send on Daniel@0: lam_msg.precision = zeros(psz, psz); Daniel@0: lam_msg.info_state = zeros(psz, 1); Daniel@0: return; Daniel@0: end Daniel@0: [m, Q, W] = gaussian_CPD_params_given_dps(CPD, [ps n], evidence); Daniel@0: Bmu = m; Daniel@0: BSigma = Q; Daniel@0: for k=1:length(cps) % only get pi msgs from cts parents Daniel@0: pk = cps(k); Daniel@0: if pk ~= p Daniel@0: %bk = block(k, cpsizes); Daniel@0: bk = CPD.cps_block_ndx{k}; Daniel@0: Bk = W(:, bk); Daniel@0: m = msg{n}.pi_from_parent{k}; Daniel@0: BSigma = BSigma + Bk * m.Sigma * Bk'; Daniel@0: Bmu = Bmu + Bk * m.mu; Daniel@0: end Daniel@0: end Daniel@0: % BSigma = Q + sum_{k \neq i} B_k Sigma_k B_k' Daniel@0: %bi = block(i, cpsizes); Daniel@0: bi = CPD.cps_block_ndx{i}; Daniel@0: Bi = W(:,bi); Daniel@0: P = msg{n}.lambda.precision; Daniel@0: if (rcond(P) > 1e-3) | isinf(P) Daniel@0: if isinf(P) % Y is observed Daniel@0: Sigma_lambda = zeros(self_size, self_size); % infinite precision => 0 variance Daniel@0: mu_lambda = msg{n}.lambda.mu; % observed_value; Daniel@0: else Daniel@0: Sigma_lambda = inv(P); Daniel@0: mu_lambda = Sigma_lambda * msg{n}.lambda.info_state; Daniel@0: end Daniel@0: C = inv(Sigma_lambda + BSigma); Daniel@0: lam_msg.precision = Bi' * C * Bi; Daniel@0: lam_msg.info_state = Bi' * C * (mu_lambda - Bmu); Daniel@0: else Daniel@0: % method that uses matrix inversion lemma to avoid inverting P Daniel@0: A = inv(P + inv(BSigma)); Daniel@0: C = P - P*A*P; Daniel@0: lam_msg.precision = Bi' * C * Bi; Daniel@0: D = eye(self_size) - P*A; Daniel@0: z = msg{n}.lambda.info_state; Daniel@0: lam_msg.info_state = Bi' * (D*z - D*P*Bmu); Daniel@0: end Daniel@0: end