Daniel@0: function [A, C, Q, R, initx, initV, LL] = ... Daniel@0: learn_kalman(data, A, C, Q, R, initx, initV, max_iter, diagQ, diagR, ARmode, constr_fun, varargin) Daniel@0: % LEARN_KALMAN Find the ML parameters of a stochastic Linear Dynamical System using EM. Daniel@0: % Daniel@0: % [A, C, Q, R, INITX, INITV, LL] = LEARN_KALMAN(DATA, A0, C0, Q0, R0, INITX0, INITV0) fits Daniel@0: % the parameters which are defined as follows Daniel@0: % x(t+1) = A*x(t) + w(t), w ~ N(0, Q), x(0) ~ N(init_x, init_V) Daniel@0: % y(t) = C*x(t) + v(t), v ~ N(0, R) Daniel@0: % A0 is the initial value, A is the final value, etc. Daniel@0: % DATA(:,t,l) is the observation vector at time t for sequence l. If the sequences are of Daniel@0: % different lengths, you can pass in a cell array, so DATA{l} is an O*T matrix. Daniel@0: % LL is the "learning curve": a vector of the log lik. values at each iteration. Daniel@0: % LL might go positive, since prob. densities can exceed 1, although this probably Daniel@0: % indicates that something has gone wrong e.g., a variance has collapsed to 0. Daniel@0: % Daniel@0: % There are several optional arguments, that should be passed in the following order. Daniel@0: % LEARN_KALMAN(DATA, A0, C0, Q0, R0, INITX0, INITV0, MAX_ITER, DIAGQ, DIAGR, ARmode) Daniel@0: % MAX_ITER specifies the maximum number of EM iterations (default 10). Daniel@0: % DIAGQ=1 specifies that the Q matrix should be diagonal. (Default 0). Daniel@0: % DIAGR=1 specifies that the R matrix should also be diagonal. (Default 0). Daniel@0: % ARMODE=1 specifies that C=I, R=0. i.e., a Gauss-Markov process. (Default 0). Daniel@0: % This problem has a global MLE. Hence the initial parameter values are not important. Daniel@0: % Daniel@0: % LEARN_KALMAN(DATA, A0, C0, Q0, R0, INITX0, INITV0, MAX_ITER, DIAGQ, DIAGR, F, P1, P2, ...) Daniel@0: % calls [A,C,Q,R,initx,initV] = f(A,C,Q,R,initx,initV,P1,P2,...) after every M step. f can be Daniel@0: % used to enforce any constraints on the params. Daniel@0: % Daniel@0: % For details, see Daniel@0: % - Ghahramani and Hinton, "Parameter Estimation for LDS", U. Toronto tech. report, 1996 Daniel@0: % - Digalakis, Rohlicek and Ostendorf, "ML Estimation of a stochastic linear system with the EM Daniel@0: % algorithm and its application to speech recognition", Daniel@0: % IEEE Trans. Speech and Audio Proc., 1(4):431--442, 1993. Daniel@0: Daniel@0: Daniel@0: % learn_kalman(data, A, C, Q, R, initx, initV, max_iter, diagQ, diagR, ARmode, constr_fun, varargin) Daniel@0: if nargin < 8, max_iter = 10; end Daniel@0: if nargin < 9, diagQ = 0; end Daniel@0: if nargin < 10, diagR = 0; end Daniel@0: if nargin < 11, ARmode = 0; end Daniel@0: if nargin < 12, constr_fun = []; end Daniel@0: verbose = 1; Daniel@0: thresh = 1e-4; Daniel@0: Daniel@0: Daniel@0: if ~iscell(data) Daniel@0: N = size(data, 3); Daniel@0: data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cell Daniel@0: else Daniel@0: N = length(data); Daniel@0: end Daniel@0: Daniel@0: N = length(data); Daniel@0: ss = size(A, 1); Daniel@0: os = size(C,1); Daniel@0: Daniel@0: alpha = zeros(os, os); Daniel@0: Tsum = 0; Daniel@0: for ex = 1:N Daniel@0: %y = data(:,:,ex); Daniel@0: y = data{ex}; Daniel@0: T = length(y); Daniel@0: Tsum = Tsum + T; Daniel@0: alpha_temp = zeros(os, os); Daniel@0: for t=1:T Daniel@0: alpha_temp = alpha_temp + y(:,t)*y(:,t)'; Daniel@0: end Daniel@0: alpha = alpha + alpha_temp; Daniel@0: end Daniel@0: Daniel@0: previous_loglik = -inf; Daniel@0: loglik = 0; Daniel@0: converged = 0; Daniel@0: num_iter = 1; Daniel@0: LL = []; Daniel@0: Daniel@0: % Convert to inline function as needed. Daniel@0: if ~isempty(constr_fun) Daniel@0: constr_fun = fcnchk(constr_fun,length(varargin)); Daniel@0: end Daniel@0: Daniel@0: Daniel@0: while ~converged & (num_iter <= max_iter) Daniel@0: Daniel@0: %%% E step Daniel@0: Daniel@0: delta = zeros(os, ss); Daniel@0: gamma = zeros(ss, ss); Daniel@0: gamma1 = zeros(ss, ss); Daniel@0: gamma2 = zeros(ss, ss); Daniel@0: beta = zeros(ss, ss); Daniel@0: P1sum = zeros(ss, ss); Daniel@0: x1sum = zeros(ss, 1); Daniel@0: loglik = 0; Daniel@0: Daniel@0: for ex = 1:N Daniel@0: y = data{ex}; Daniel@0: T = length(y); Daniel@0: [beta_t, gamma_t, delta_t, gamma1_t, gamma2_t, x1, V1, loglik_t] = ... Daniel@0: Estep(y, A, C, Q, R, initx, initV, ARmode); Daniel@0: beta = beta + beta_t; Daniel@0: gamma = gamma + gamma_t; Daniel@0: delta = delta + delta_t; Daniel@0: gamma1 = gamma1 + gamma1_t; Daniel@0: gamma2 = gamma2 + gamma2_t; Daniel@0: P1sum = P1sum + V1 + x1*x1'; Daniel@0: x1sum = x1sum + x1; Daniel@0: %fprintf(1, 'example %d, ll/T %5.3f\n', ex, loglik_t/T); Daniel@0: loglik = loglik + loglik_t; Daniel@0: end Daniel@0: LL = [LL loglik]; Daniel@0: if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end Daniel@0: %fprintf(1, 'iteration %d, loglik/NT = %f\n', num_iter, loglik/Tsum); Daniel@0: num_iter = num_iter + 1; Daniel@0: Daniel@0: %%% M step Daniel@0: Daniel@0: % Tsum = N*T Daniel@0: % Tsum1 = N*(T-1); Daniel@0: Tsum1 = Tsum - N; Daniel@0: A = beta * inv(gamma1); Daniel@0: %A = (gamma1' \ beta')'; Daniel@0: Q = (gamma2 - A*beta') / Tsum1; Daniel@0: if diagQ Daniel@0: Q = diag(diag(Q)); Daniel@0: end Daniel@0: if ~ARmode Daniel@0: C = delta * inv(gamma); Daniel@0: %C = (gamma' \ delta')'; Daniel@0: R = (alpha - C*delta') / Tsum; Daniel@0: if diagR Daniel@0: R = diag(diag(R)); Daniel@0: end Daniel@0: end Daniel@0: initx = x1sum / N; Daniel@0: initV = P1sum/N - initx*initx'; Daniel@0: Daniel@0: if ~isempty(constr_fun) Daniel@0: [A,C,Q,R,initx,initV] = feval(constr_fun, A, C, Q, R, initx, initV, varargin{:}); Daniel@0: end Daniel@0: Daniel@0: converged = em_converged(loglik, previous_loglik, thresh); Daniel@0: previous_loglik = loglik; Daniel@0: end Daniel@0: Daniel@0: Daniel@0: Daniel@0: %%%%%%%%% Daniel@0: Daniel@0: function [beta, gamma, delta, gamma1, gamma2, x1, V1, loglik] = ... Daniel@0: Estep(y, A, C, Q, R, initx, initV, ARmode) Daniel@0: % Daniel@0: % Compute the (expected) sufficient statistics for a single Kalman filter sequence. Daniel@0: % Daniel@0: Daniel@0: [os T] = size(y); Daniel@0: ss = length(A); Daniel@0: Daniel@0: if ARmode Daniel@0: xsmooth = y; Daniel@0: Vsmooth = zeros(ss, ss, T); % no uncertainty about the hidden states Daniel@0: VVsmooth = zeros(ss, ss, T); Daniel@0: loglik = 0; Daniel@0: else Daniel@0: [xsmooth, Vsmooth, VVsmooth, loglik] = kalman_smoother(y, A, C, Q, R, initx, initV); Daniel@0: end Daniel@0: Daniel@0: delta = zeros(os, ss); Daniel@0: gamma = zeros(ss, ss); Daniel@0: beta = zeros(ss, ss); Daniel@0: for t=1:T Daniel@0: delta = delta + y(:,t)*xsmooth(:,t)'; Daniel@0: gamma = gamma + xsmooth(:,t)*xsmooth(:,t)' + Vsmooth(:,:,t); Daniel@0: if t>1 beta = beta + xsmooth(:,t)*xsmooth(:,t-1)' + VVsmooth(:,:,t); end Daniel@0: end Daniel@0: gamma1 = gamma - xsmooth(:,T)*xsmooth(:,T)' - Vsmooth(:,:,T); Daniel@0: gamma2 = gamma - xsmooth(:,1)*xsmooth(:,1)' - Vsmooth(:,:,1); Daniel@0: Daniel@0: x1 = xsmooth(:,1); Daniel@0: V1 = Vsmooth(:,:,1); Daniel@0: Daniel@0: Daniel@0: