Daniel@0: function mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nc, varargin) Daniel@0: % function mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nclusters, varargin) Daniel@0: % trainFeatures(:,i) for i'th example Daniel@0: % trainLabels should be 0,1 Daniel@0: % To evaluate performance on a tets set, use Daniel@0: % mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nc, 'testFeatures', tf, 'testLabels', tl) Daniel@0: Daniel@0: [testFeatures, testLabels, max_iter, thresh, cov_type, mu, Sigma, priorC, method, ... Daniel@0: cov_prior, verbose, prune_thresh] = process_options(... Daniel@0: varargin, 'testFeatures', [], 'testLabels', [], ... Daniel@0: 'max_iter', 10, 'thresh', 0.01, 'cov_type', 'diag', ... Daniel@0: 'mu', [], 'Sigma', [], 'priorC', [], 'method', 'kmeans', ... Daniel@0: 'cov_prior', [], 'verbose', 0, 'prune_thresh', 0); Daniel@0: Daniel@0: Nclasses = 2; % max([trainLabels testLabels]) + 1; Daniel@0: Daniel@0: pos = find(trainLabels == 1); Daniel@0: neg = find(trainLabels == 0); Daniel@0: Daniel@0: if verbose, fprintf('fitting pos\n'); end Daniel@0: [mixgauss.pos.mu, mixgauss.pos.Sigma, mixgauss.pos.prior] = ... Daniel@0: mixgauss_em(trainFeatures(:, pos), nc, varargin{:}); Daniel@0: Daniel@0: if verbose, fprintf('fitting neg\n'); end Daniel@0: [mixgauss.neg.mu, mixgauss.neg.Sigma, mixgauss.neg.prior] = ... Daniel@0: mixgauss_em(trainFeatures(:, neg), nc, varargin{:}); Daniel@0: Daniel@0: Daniel@0: if ~isempty(priorC) Daniel@0: mixgauss.priorC = priorC; Daniel@0: else Daniel@0: mixgauss.priorC = normalize([length(pos) length(neg)]); Daniel@0: end