Daniel@0: function pi = mc_stat_distrib(P) Daniel@0: % MC_STAT_DISTRIB Compute stationary distribution of a Markov chain Daniel@0: % function pi = mc_stat_distrib(P) Daniel@0: % Daniel@0: % Each row of P should sum to one; pi is a column vector Daniel@0: Daniel@0: % Kevin Murphy, 16 Feb 2003 Daniel@0: Daniel@0: % The stationary distribution pi satisfies pi P = pi Daniel@0: % subject to sum_i pi(i) = 1, 0 <= pi(i) <= 1 Daniel@0: % Hence Daniel@0: % (P' 0n (pi = (pi Daniel@0: % 1n 0) 1) 1) Daniel@0: % or P2 pi2 = pi2. Daniel@0: % Naively we can solve this using (P2 - I(n+1)) pi2 = 0(n+1) Daniel@0: % or P3 pi2 = 0(n+1), i.e., pi2 = P3 \ zeros(n+1,1) Daniel@0: % but this is singular (because of the sum-to-one constraint). Daniel@0: % Hence we replace the last row of P' with 1s instead of appending ones to create P2, Daniel@0: % and similarly for pi. Daniel@0: Daniel@0: n = length(P); Daniel@0: P4 = P'-eye(n); Daniel@0: P4(end,:) = 1; Daniel@0: pi = P4 \ [zeros(n-1,1);1]; Daniel@0: Daniel@0: