Daniel@0: function [initState, transmat, mu, Nproto, pick] = mhmmParzen_train_observed(obsData, hiddenData, ... Daniel@0: nstates, maxNproto, varargin) Daniel@0: % mhmmParzentrain_observed with mixture of Gaussian outputs from fully observed sequences Daniel@0: % function [initState, transmat, mu, Nproto] = mhmm_train_observed_parzen(obsData, hiddenData, ... Daniel@0: % nstates, maxNproto) Daniel@0: % Daniel@0: % Daniel@0: % INPUT Daniel@0: % If all sequences have the same length Daniel@0: % obsData(:,t,ex) Daniel@0: % hiddenData(ex,t) - must be ROW vector if only one sequence Daniel@0: % If sequences have different lengths, we use cell arrays Daniel@0: % obsData{ex}(:,t) Daniel@0: % hiddenData{ex}(t) Daniel@0: % Daniel@0: % Optional argumnets Daniel@0: % dirichletPriorWeight - for smoothing transition matrix counts Daniel@0: % mkSymmetric Daniel@0: % Daniel@0: % Output Daniel@0: % mu(:,q) Daniel@0: % Nproto(q) is the number of prototypes (mixture components) chosen for state q Daniel@0: Daniel@0: [transmat, initState] = transmat_train_observed(... Daniel@0: hiddenData, nstates, varargin{:}); Daniel@0: Daniel@0: % convert to obsData(:,t*nex) Daniel@0: if ~iscell(obsData) Daniel@0: [D T Nex] = size(obsData); Daniel@0: obsData = reshape(obsData, D, T*Nex); Daniel@0: else Daniel@0: obsData = cat(2, obsData{:}); Daniel@0: hiddenData = cat(2, hiddenData{:}); Daniel@0: end Daniel@0: [mu, Nproto, pick] = parzen_fit_select_unif(obsData, hiddenData(:), maxNproto); Daniel@0: Daniel@0: