Daniel@0: function write_mat_resutls_ismir12(filein, subrun, fileout) Daniel@0: % write_mat_resutls_ismir12(filein, subrun, fileout) Daniel@0: % Daniel@0: % write results from result file into ismir12 generic format. Daniel@0: % if subrun is a vector, the results are averaged over the Daniel@0: % runs specified Daniel@0: Daniel@0: Daniel@0: [out, stats, features, individual] = test_generic_display_results(filein); Daniel@0: Daniel@0: % --- Daniel@0: % we get the single individual values and Daniel@0: % --- Daniel@0: for i = 1:numel(subrun) Daniel@0: individual = individual(subrun); Daniel@0: Daniel@0: % number of inctrain cycles Daniel@0: n_inctrain = numel(individual.diag.inctrain); Daniel@0: Daniel@0: % --- Daniel@0: % ok_train_unused Daniel@0: % --- Daniel@0: values_ok_train_unused{i} = reshape([individual.diag.inctrain.ok_notin_train], [],n_inctrain); Daniel@0: values_ok_train_unused{i} = values_ok_train_unused(1:2:end,:).*100; Daniel@0: Daniel@0: mean_ok_train_unused{i} = mean(values_ok_train_unused, 1); Daniel@0: var_ok_train_unused{i} = var(values_ok_train_unused,[], 1); Daniel@0: Daniel@0: % --- Daniel@0: % ok_train Daniel@0: % --- Daniel@0: values_ok_train{i} = reshape([individual.diag.inctrain.ok_train], [],n_inctrain); Daniel@0: values_ok_train{i} = values_ok_train(1:2:end,:).*100; Daniel@0: Daniel@0: mean_ok_train{i} = mean(values_ok_train, 1); Daniel@0: var_ok_train{i} = var(values_ok_train,[], 1); Daniel@0: Daniel@0: % --- Daniel@0: % ok_test Daniel@0: % --- Daniel@0: values_ok_test{i} = reshape([individual.diag.inctrain.ok_test], [],n_inctrain); Daniel@0: values_ok_test{i} = values_ok_test(1:2:end,:).*100; Daniel@0: Daniel@0: mean_ok_test{i} = mean(values_ok_test, 1); Daniel@0: var_ok_test{i} = var(values_ok_test,[], 1); Daniel@0: end Daniel@0: Daniel@0: Daniel@0: Daniel@0: clear ('out', 'stats', 'features', 'individual'); Daniel@0: save(fileout)