Mercurial > hg > camir-ismir2012
comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_norm_variable.m @ 0:cc4b1211e677 tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
| author | Daniel Wolff |
|---|---|
| date | Fri, 19 Aug 2016 13:07:06 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:cc4b1211e677 |
|---|---|
| 1 function [x,sNorm] = som_norm_variable(x, method, operation) | |
| 2 | |
| 3 %SOM_NORM_VARIABLE Normalize or denormalize a scalar variable. | |
| 4 % | |
| 5 % [x,sNorm] = som_norm_variable(x, method, operation) | |
| 6 % | |
| 7 % xnew = som_norm_variable(x,'var','do'); | |
| 8 % [dummy,sN] = som_norm_variable(x,'log','init'); | |
| 9 % [xnew,sN] = som_norm_variable(x,sN,'do'); | |
| 10 % xorig = som_norm_variable(xnew,sN,'undo'); | |
| 11 % | |
| 12 % Input and output arguments: | |
| 13 % x (vector) a set of values of a scalar variable for | |
| 14 % which the (de)normalization is performed. | |
| 15 % The processed values are returned. | |
| 16 % method (string) identifier for a normalization method: 'var', | |
| 17 % 'range', 'log', 'logistic', 'histD', or 'histC'. | |
| 18 % A normalization struct with default values is created. | |
| 19 % (struct) normalization struct, or an array of such | |
| 20 % (cellstr) first string gives normalization operation, and the | |
| 21 % second gives denormalization operation, with x | |
| 22 % representing the variable, for example: | |
| 23 % {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}. | |
| 24 % Note that in the last case, no denorm operation is | |
| 25 % defined. | |
| 26 % operation (string) the operation to be performed: 'init', 'do' or 'undo' | |
| 27 % | |
| 28 % sNorm (struct) updated normalization struct/struct array | |
| 29 % | |
| 30 % For more help, try 'type som_norm_variable' or check out online documentation. | |
| 31 % See also SOM_NORMALIZE, SOM_DENORMALIZE. | |
| 32 | |
| 33 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 34 % | |
| 35 % som_norm_variable | |
| 36 % | |
| 37 % PURPOSE | |
| 38 % | |
| 39 % Initialize, apply and undo normalizations on a given vector of | |
| 40 % scalar values. | |
| 41 % | |
| 42 % SYNTAX | |
| 43 % | |
| 44 % xnew = som_norm_variable(x,method,operation) | |
| 45 % xnew = som_norm_variable(x,sNorm,operation) | |
| 46 % [xnew,sNorm] = som_norm_variable(...) | |
| 47 % | |
| 48 % DESCRIPTION | |
| 49 % | |
| 50 % This function is used to initialize, apply and undo normalizations | |
| 51 % on scalar variables. It is the low-level function that upper-level | |
| 52 % functions SOM_NORMALIZE and SOM_DENORMALIZE utilize to actually (un)do | |
| 53 % the normalizations. | |
| 54 % | |
| 55 % Normalizations are typically performed to control the variance of | |
| 56 % vector components. If some vector components have variance which is | |
| 57 % significantly higher than the variance of other components, those | |
| 58 % components will dominate the map organization. Normalization of | |
| 59 % the variance of vector components (method 'var') is used to prevent | |
| 60 % that. In addition to variance normalization, other methods have | |
| 61 % been implemented as well (see list below). | |
| 62 % | |
| 63 % Usually normalizations convert the variable values so that they no | |
| 64 % longer make any sense: the values are still ordered, but their range | |
| 65 % may have changed so radically that interpreting the numbers in the | |
| 66 % original context is very hard. For this reason all implemented methods | |
| 67 % are (more or less) revertible. The normalizations are monotonic | |
| 68 % and information is saved so that they can be undone. Also, the saved | |
| 69 % information makes it possible to apply the EXACTLY SAME normalization | |
| 70 % to another set of values. The normalization information is determined | |
| 71 % with 'init' operation, while 'do' and 'undo' operations are used to | |
| 72 % apply or revert the normalization. | |
| 73 % | |
| 74 % The normalization information is saved in a normalization struct, | |
| 75 % which is returned as the second argument of this function. Note that | |
| 76 % normalization operations may be stacked. In this case, normalization | |
| 77 % structs are positioned in a struct array. When applied, the array is | |
| 78 % gone through from start to end, and when undone, in reverse order. | |
| 79 % | |
| 80 % method description | |
| 81 % | |
| 82 % 'var' Variance normalization. A linear transformation which | |
| 83 % scales the values such that their variance=1. This is | |
| 84 % convenient way to use Mahalanobis distance measure without | |
| 85 % actually changing the distance calculation procedure. | |
| 86 % | |
| 87 % 'range' Normalization of range of values. A linear transformation | |
| 88 % which scales the values between [0,1]. | |
| 89 % | |
| 90 % 'log' Logarithmic normalization. In many cases the values of | |
| 91 % a vector component are exponentially distributed. This | |
| 92 % normalization is a good way to get more resolution to | |
| 93 % (the low end of) that vector component. What this | |
| 94 % actually does is a non-linear transformation: | |
| 95 % x_new = log(x_old - m + 1) | |
| 96 % where m=min(x_old) and log is the natural logarithm. | |
| 97 % Applying the transformation to a value which is lower | |
| 98 % than m-1 will give problems, as the result is then complex. | |
| 99 % If the minimum for values is known a priori, | |
| 100 % it might be a good idea to initialize the normalization with | |
| 101 % [dummy,sN] = som_norm_variable(minimum,'log','init'); | |
| 102 % and normalize only after this: | |
| 103 % x_new = som_norm_variable(x,sN,'do'); | |
| 104 % | |
| 105 % 'logistic' or softmax normalization. This normalization ensures | |
| 106 % that all values in the future, too, are within the range | |
| 107 % [0,1]. The transformation is more-or-less linear in the | |
| 108 % middle range (around mean value), and has a smooth | |
| 109 % nonlinearity at both ends which ensures that all values | |
| 110 % are within the range. The data is first scaled as in | |
| 111 % variance normalization: | |
| 112 % x_scaled = (x_old - mean(x_old))/std(x_old) | |
| 113 % and then transformed with the logistic function | |
| 114 % x_new = 1/(1+exp(-x_scaled)) | |
| 115 % | |
| 116 % 'histD' Discrete histogram equalization. Non-linear. Orders the | |
| 117 % values and replaces each value by its ordinal number. | |
| 118 % Finally, scales the values such that they are between [0,1]. | |
| 119 % Useful for both discrete and continuous variables, but as | |
| 120 % the saved normalization information consists of all | |
| 121 % unique values of the initialization data set, it may use | |
| 122 % considerable amounts of memory. If the variable can get | |
| 123 % more than a few values (say, 20), it might be better to | |
| 124 % use 'histC' method below. Another important note is that | |
| 125 % this method is not exactly revertible if it is applied | |
| 126 % to values which are not part of the original value set. | |
| 127 % | |
| 128 % 'histC' Continuous histogram equalization. Actually, a partially | |
| 129 % linear transformation which tries to do something like | |
| 130 % histogram equalization. The value range is divided to | |
| 131 % a number of bins such that the number of values in each | |
| 132 % bin is (almost) the same. The values are transformed | |
| 133 % linearly in each bin. For example, values in bin number 3 | |
| 134 % are scaled between [3,4[. Finally, all values are scaled | |
| 135 % between [0,1]. The number of bins is the square root | |
| 136 % of the number of unique values in the initialization set, | |
| 137 % rounded up. The resulting histogram equalization is not | |
| 138 % as good as the one that 'histD' makes, but the benefit | |
| 139 % is that it is exactly revertible - even outside the | |
| 140 % original value range (although the results may be funny). | |
| 141 % | |
| 142 % 'eval' With this method, freeform normalization operations can be | |
| 143 % specified. The parameter field contains strings to be | |
| 144 % evaluated with 'eval' function, with variable name 'x' | |
| 145 % representing the variable itself. The first string is | |
| 146 % the normalization operation, and the second is a | |
| 147 % denormalization operation. If the denormalization operation | |
| 148 % is empty, it is ignored. | |
| 149 % | |
| 150 % INPUT ARGUMENTS | |
| 151 % | |
| 152 % x (vector) The scalar values to which the normalization | |
| 153 % operation is applied. | |
| 154 % | |
| 155 % method The normalization specification. | |
| 156 % (string) Identifier for a normalization method: 'var', | |
| 157 % 'range', 'log', 'logistic', 'histD' or 'histC'. | |
| 158 % Corresponding default normalization struct is created. | |
| 159 % (struct) normalization struct | |
| 160 % (struct array) of normalization structs, applied to | |
| 161 % x one after the other | |
| 162 % (cellstr) of length | |
| 163 % (cellstr array) first string gives normalization operation, and | |
| 164 % the second gives denormalization operation, with x | |
| 165 % representing the variable, for example: | |
| 166 % {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}. | |
| 167 % Note that in the last case, no denorm operation is | |
| 168 % defined. | |
| 169 % | |
| 170 % note: if the method is given as struct(s), it is | |
| 171 % applied (done or undone, as specified by operation) | |
| 172 % regardless of what the value of '.status' field | |
| 173 % is in the struct(s). Only if the status is | |
| 174 % 'uninit', the undoing operation is halted. | |
| 175 % Anyhow, the '.status' fields in the returned | |
| 176 % normalization struct(s) is set to approriate value. | |
| 177 % | |
| 178 % operation (string) The operation to perform: 'init' to initialize | |
| 179 % the normalization struct, 'do' to perform the | |
| 180 % normalization, 'undo' to undo the normalization, | |
| 181 % if possible. If operation 'do' is given, but the | |
| 182 % normalization struct has not yet been initialized, | |
| 183 % it is initialized using the given data (x). | |
| 184 % | |
| 185 % OUTPUT ARGUMENTS | |
| 186 % | |
| 187 % x (vector) Appropriately processed values. | |
| 188 % | |
| 189 % sNorm (struct) Updated normalization struct/struct array. If any, | |
| 190 % the '.status' and '.params' fields are updated. | |
| 191 % | |
| 192 % EXAMPLES | |
| 193 % | |
| 194 % To initialize and apply a normalization on a set of scalar values: | |
| 195 % | |
| 196 % [x_new,sN] = som_norm_variable(x_old,'var','do'); | |
| 197 % | |
| 198 % To just initialize, use: | |
| 199 % | |
| 200 % [dummy,sN] = som_norm_variable(x_old,'var','init'); | |
| 201 % | |
| 202 % To undo the normalization(s): | |
| 203 % | |
| 204 % x_orig = som_norm_variable(x_new,sN,'undo'); | |
| 205 % | |
| 206 % Typically, normalizations of data structs/sets are handled using | |
| 207 % functions SOM_NORMALIZE and SOM_DENORMALIZE. However, when only the | |
| 208 % values of a single variable are of interest, SOM_NORM_VARIABLE may | |
| 209 % be useful. For example, assume one wants to apply the normalization | |
| 210 % done on a component (i) of a data struct (sD) to a new set of values | |
| 211 % (x) of that component. With SOM_NORM_VARIABLE this can be done with: | |
| 212 % | |
| 213 % x_new = som_norm_variable(x,sD.comp_norm{i},'do'); | |
| 214 % | |
| 215 % Now, as the normalizations in sD.comp_norm{i} have already been | |
| 216 % initialized with the original data set (presumably sD.data), | |
| 217 % the EXACTLY SAME normalization(s) can be applied to the new values. | |
| 218 % The same thing can be done with SOM_NORMALIZE function, too: | |
| 219 % | |
| 220 % x_new = som_normalize(x,sD.comp_norm{i}); | |
| 221 % | |
| 222 % Or, if the new data set were in variable D - a matrix of same | |
| 223 % dimension as the original data set: | |
| 224 % | |
| 225 % D_new = som_normalize(D,sD,i); | |
| 226 % | |
| 227 % SEE ALSO | |
| 228 % | |
| 229 % som_normalize Add/apply/redo normalizations for a data struct/set. | |
| 230 % som_denormalize Undo normalizations of a data struct/set. | |
| 231 | |
| 232 % Copyright (c) 1998-2000 by the SOM toolbox programming team. | |
| 233 % http://www.cis.hut.fi/projects/somtoolbox/ | |
| 234 | |
| 235 % Version 2.0beta juuso 151199 170400 150500 | |
| 236 | |
| 237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 238 %% check arguments | |
| 239 | |
| 240 error(nargchk(3, 3, nargin)); % check no. of input arguments is correct | |
| 241 | |
| 242 % method | |
| 243 sNorm = []; | |
| 244 if ischar(method) | |
| 245 if any(strcmp(method,{'var','range','log','logistic','histD','histC'})), | |
| 246 sNorm = som_set('som_norm','method',method); | |
| 247 else | |
| 248 method = cellstr(method); | |
| 249 end | |
| 250 end | |
| 251 if iscell(method), | |
| 252 if length(method)==1 & isstruct(method{1}), sNorm = method{1}; | |
| 253 else | |
| 254 if length(method)==1 | isempty(method{2}), method{2} = 'x'; end | |
| 255 sNorm = som_set('som_norm','method','eval','params',method); | |
| 256 end | |
| 257 else | |
| 258 sNorm = method; | |
| 259 end | |
| 260 | |
| 261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 262 %% action | |
| 263 | |
| 264 order = [1:length(sNorm)]; | |
| 265 if length(order)>1 & strcmp(operation,'undo'), order = order(end:-1:1); end | |
| 266 | |
| 267 for i=order, | |
| 268 | |
| 269 % initialize | |
| 270 if strcmp(operation,'init') | ... | |
| 271 (strcmp(operation,'do') & strcmp(sNorm(i).status,'uninit')), | |
| 272 | |
| 273 % case method = 'hist' | |
| 274 if strcmp(sNorm(i).method,'hist'), | |
| 275 inds = find(~isnan(x) & ~isinf(x)); | |
| 276 if length(unique(x(inds)))>20, sNorm(i).method = 'histC'; | |
| 277 else sNorm{i}.method = 'histD'; end | |
| 278 end | |
| 279 | |
| 280 switch(sNorm(i).method), | |
| 281 case 'var', params = norm_variance_init(x); | |
| 282 case 'range', params = norm_scale01_init(x); | |
| 283 case 'log', params = norm_log_init(x); | |
| 284 case 'logistic', params = norm_logistic_init(x); | |
| 285 case 'histD', params = norm_histeqD_init(x); | |
| 286 case 'histC', params = norm_histeqC_init(x); | |
| 287 case 'eval', params = sNorm(i).params; | |
| 288 otherwise, | |
| 289 error(['Unrecognized method: ' sNorm(i).method]); | |
| 290 end | |
| 291 sNorm(i).params = params; | |
| 292 sNorm(i).status = 'undone'; | |
| 293 end | |
| 294 | |
| 295 % do / undo | |
| 296 if strcmp(operation,'do'), | |
| 297 switch(sNorm(i).method), | |
| 298 case 'var', x = norm_scale_do(x,sNorm(i).params); | |
| 299 case 'range', x = norm_scale_do(x,sNorm(i).params); | |
| 300 case 'log', x = norm_log_do(x,sNorm(i).params); | |
| 301 case 'logistic', x = norm_logistic_do(x,sNorm(i).params); | |
| 302 case 'histD', x = norm_histeqD_do(x,sNorm(i).params); | |
| 303 case 'histC', x = norm_histeqC_do(x,sNorm(i).params); | |
| 304 case 'eval', x = norm_eval_do(x,sNorm(i).params); | |
| 305 otherwise, | |
| 306 error(['Unrecognized method: ' sNorm(i).method]); | |
| 307 end | |
| 308 sNorm(i).status = 'done'; | |
| 309 | |
| 310 elseif strcmp(operation,'undo'), | |
| 311 | |
| 312 if strcmp(sNorm(i).status,'uninit'), | |
| 313 warning('Could not undo: uninitialized normalization struct.') | |
| 314 break; | |
| 315 end | |
| 316 switch(sNorm(i).method), | |
| 317 case 'var', x = norm_scale_undo(x,sNorm(i).params); | |
| 318 case 'range', x = norm_scale_undo(x,sNorm(i).params); | |
| 319 case 'log', x = norm_log_undo(x,sNorm(i).params); | |
| 320 case 'logistic', x = norm_logistic_undo(x,sNorm(i).params); | |
| 321 case 'histD', x = norm_histeqD_undo(x,sNorm(i).params); | |
| 322 case 'histC', x = norm_histeqC_undo(x,sNorm(i).params); | |
| 323 case 'eval', x = norm_eval_undo(x,sNorm(i).params); | |
| 324 otherwise, | |
| 325 error(['Unrecognized method: ' sNorm(i).method]); | |
| 326 end | |
| 327 sNorm(i).status = 'undone'; | |
| 328 | |
| 329 elseif ~strcmp(operation,'init'), | |
| 330 | |
| 331 error(['Unrecognized operation: ' operation]) | |
| 332 | |
| 333 end | |
| 334 end | |
| 335 | |
| 336 return; | |
| 337 | |
| 338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 339 %% subfunctions | |
| 340 | |
| 341 % linear scaling | |
| 342 | |
| 343 function p = norm_variance_init(x) | |
| 344 inds = find(~isnan(x) & isfinite(x)); | |
| 345 p = [mean(x(inds)), std(x(inds))]; | |
| 346 if p(2) == 0, p(2) = 1; end | |
| 347 %end of norm_variance_init | |
| 348 | |
| 349 function p = norm_scale01_init(x) | |
| 350 inds = find(~isnan(x) & isfinite(x)); | |
| 351 mi = min(x(inds)); | |
| 352 ma = max(x(inds)); | |
| 353 if mi == ma, p = [mi, 1]; else p = [mi, ma-mi]; end | |
| 354 %end of norm_scale01_init | |
| 355 | |
| 356 function x = norm_scale_do(x,p) | |
| 357 x = (x - p(1)) / p(2); | |
| 358 % end of norm_scale_do | |
| 359 | |
| 360 function x = norm_scale_undo(x,p) | |
| 361 x = x * p(2) + p(1); | |
| 362 % end of norm_scale_undo | |
| 363 | |
| 364 % logarithm | |
| 365 | |
| 366 function p = norm_log_init(x) | |
| 367 inds = find(~isnan(x) & isfinite(x)); | |
| 368 p = min(x(inds)); | |
| 369 % end of norm_log_init | |
| 370 | |
| 371 function x = norm_log_do(x,p) | |
| 372 x = log(x - p +1); | |
| 373 % if any(~isreal(x)), ok = 0; end | |
| 374 % end of norm_log_do | |
| 375 | |
| 376 function x = norm_log_undo(x,p) | |
| 377 x = exp(x) -1 + p; | |
| 378 % end of norm_log_undo | |
| 379 | |
| 380 % logistic | |
| 381 | |
| 382 function p = norm_logistic_init(x) | |
| 383 inds = find(~isnan(x) & isfinite(x)); | |
| 384 p = [mean(x(inds)), std(x(inds))]; | |
| 385 if p(2)==0, p(2) = 1; end | |
| 386 % end of norm_logistic_init | |
| 387 | |
| 388 function x = norm_logistic_do(x,p) | |
| 389 x = (x-p(1))/p(2); | |
| 390 x = 1./(1+exp(-x)); | |
| 391 % end of norm_logistic_do | |
| 392 | |
| 393 function x = norm_logistic_undo(x,p) | |
| 394 x = log(x./(1-x)); | |
| 395 x = x*p(2)+p(1); | |
| 396 % end of norm_logistic_undo | |
| 397 | |
| 398 % histogram equalization for discrete values | |
| 399 | |
| 400 function p = norm_histeqD_init(x) | |
| 401 inds = find(~isnan(x) & ~isinf(x)); | |
| 402 p = unique(x(inds)); | |
| 403 % end of norm_histeqD_init | |
| 404 | |
| 405 function x = norm_histeqD_do(x,p) | |
| 406 bins = length(p); | |
| 407 inds = find(~isnan(x) & ~isinf(x))'; | |
| 408 for i = inds, | |
| 409 [dummy ind] = min(abs(x(i) - p)); | |
| 410 % data item closer to the left-hand bin wall is indexed after RH wall | |
| 411 if x(i) > p(ind) & ind < bins, | |
| 412 x(i) = ind + 1; | |
| 413 else | |
| 414 x(i) = ind; | |
| 415 end | |
| 416 end | |
| 417 x = (x-1)/(bins-1); % normalization between [0,1] | |
| 418 % end of norm_histeqD_do | |
| 419 | |
| 420 function x = norm_histeqD_undo(x,p) | |
| 421 bins = length(p); | |
| 422 x = round(x*(bins-1)+1); | |
| 423 inds = find(~isnan(x) & ~isinf(x)); | |
| 424 x(inds) = p(x(inds)); | |
| 425 % end of norm_histeqD_undo | |
| 426 | |
| 427 % histogram equalization with partially linear functions | |
| 428 | |
| 429 function p = norm_histeqC_init(x) | |
| 430 % investigate x | |
| 431 inds = find(~isnan(x) & ~isinf(x)); | |
| 432 samples = length(inds); | |
| 433 xs = unique(x(inds)); | |
| 434 mi = xs(1); | |
| 435 ma = xs(end); | |
| 436 % decide number of limits | |
| 437 lims = ceil(sqrt(length(xs))); % 2->2,100->10,1000->32,10000->100 | |
| 438 % decide limits | |
| 439 if lims==1, | |
| 440 p = [mi, mi+1]; | |
| 441 lims = 2; | |
| 442 elseif lims==2, | |
| 443 p = [mi, ma]; | |
| 444 else | |
| 445 p = zeros(lims,1); | |
| 446 p(1) = mi; | |
| 447 p(end) = ma; | |
| 448 binsize = zeros(lims-1,1); b = 1; avebinsize = samples/(lims-1); | |
| 449 for i=1:(length(xs)-1), | |
| 450 binsize(b) = binsize(b) + sum(x==xs(i)); | |
| 451 if binsize(b) >= avebinsize, | |
| 452 b = b + 1; | |
| 453 p(b) = (xs(i)+xs(i+1))/2; | |
| 454 end | |
| 455 if b==(lims-1), | |
| 456 binsize(b) = samples-sum(binsize); break; | |
| 457 else | |
| 458 avebinsize = (samples-sum(binsize))/(lims-1-b); | |
| 459 end | |
| 460 end | |
| 461 end | |
| 462 % end of norm_histeqC_init | |
| 463 | |
| 464 function x = norm_histeqC_do(x,p) | |
| 465 xnew = x; | |
| 466 lims = length(p); | |
| 467 % handle values below minimum | |
| 468 r = p(2)-p(1); | |
| 469 inds = find(x<=p(1) & isfinite(x)); | |
| 470 if any(inds), xnew(inds) = 0-(p(1)-x(inds))/r; end | |
| 471 % handle values above maximum | |
| 472 r = p(end)-p(end-1); | |
| 473 inds = find(x>p(end) & isfinite(x)); | |
| 474 if any(inds), xnew(inds) = lims-1+(x(inds)-p(end))/r; end | |
| 475 % handle all other values | |
| 476 for i=1:(lims-1), | |
| 477 r0 = p(i); r1 = p(i+1); r = r1-r0; | |
| 478 inds = find(x>r0 & x<=r1); | |
| 479 if any(inds), xnew(inds) = i-1+(x(inds)-r0)/r; end | |
| 480 end | |
| 481 % scale so that minimum and maximum correspond to 0 and 1 | |
| 482 x = xnew/(lims-1); | |
| 483 % end of norm_histeqC_do | |
| 484 | |
| 485 function x = norm_histeqC_undo(x,p) | |
| 486 xnew = x; | |
| 487 lims = length(p); | |
| 488 % scale so that 0 and 1 correspond to minimum and maximum | |
| 489 x = x*(lims-1); | |
| 490 | |
| 491 % handle values below minimum | |
| 492 r = p(2)-p(1); | |
| 493 inds = find(x<=0 & isfinite(x)); | |
| 494 if any(inds), xnew(inds) = x(inds)*r + p(1); end | |
| 495 % handle values above maximum | |
| 496 r = p(end)-p(end-1); | |
| 497 inds = find(x>lims-1 & isfinite(x)); | |
| 498 if any(inds), xnew(inds) = (x(inds)-(lims-1))*r+p(end); end | |
| 499 % handle all other values | |
| 500 for i=1:(lims-1), | |
| 501 r0 = p(i); r1 = p(i+1); r = r1-r0; | |
| 502 inds = find(x>i-1 & x<=i); | |
| 503 if any(inds), xnew(inds) = (x(inds)-(i-1))*r + r0; end | |
| 504 end | |
| 505 x = xnew; | |
| 506 % end of norm_histeqC_undo | |
| 507 | |
| 508 % eval | |
| 509 | |
| 510 function p = norm_eval_init(method) | |
| 511 p = method; | |
| 512 %end of norm_eval_init | |
| 513 | |
| 514 function x = norm_eval_do(x,p) | |
| 515 x_tmp = eval(p{1}); | |
| 516 if size(x_tmp,1)>=1 & size(x,1)>=1 & ... | |
| 517 size(x_tmp,2)==1 & size(x,2)==1, | |
| 518 x = x_tmp; | |
| 519 end | |
| 520 %end of norm_eval_do | |
| 521 | |
| 522 function x = norm_eval_undo(x,p) | |
| 523 x_tmp = eval(p{2}); | |
| 524 if size(x_tmp,1)>=1 & size(x,1)>=1 & ... | |
| 525 size(x_tmp,2)==1 & size(x,2)==1, | |
| 526 x = x_tmp; | |
| 527 end | |
| 528 %end of norm_eval_undo | |
| 529 | |
| 530 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 531 | |
| 532 | |
| 533 |
