Mercurial > hg > camir-ismir2012
comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@softmax_CPD/update_ess.m @ 0:cc4b1211e677 tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
author | Daniel Wolff |
---|---|
date | Fri, 19 Aug 2016 13:07:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:cc4b1211e677 |
---|---|
1 function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) | |
2 % UPDATE_ESS Update the Expected Sufficient Statistics of a softmax node | |
3 % function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) | |
4 % | |
5 % fmarginal = overall posterior distribution of self and its parents | |
6 % fmarginal(i1,i2...,ik,s)=prob(Pa1=i1,...,Pak=ik, self=s| X) | |
7 % | |
8 % => 1) prob(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) with prob(Pa1,...,Pak)=sum{s,fmarginal} | |
9 % [self estimation -> CPD.self_vals] | |
10 % 2) prob(Pa1,...,Pak) [WIRLS weights -> CPD.eso_weights] | |
11 % | |
12 % Hidden_bitv is ignored | |
13 | |
14 % Written by Pierpaolo Brutti | |
15 | |
16 if ~adjustable_CPD(CPD), return; end | |
17 | |
18 domain = fmarginal.domain; | |
19 self = domain(end); | |
20 ps = domain(1:end-1); | |
21 cnodes = domain(CPD.cpndx); | |
22 cps = myintersect(domain, cnodes); | |
23 dps = mysetdiff(ps, cps); | |
24 dn_use = dps; | |
25 if isempty(evidence{self}) dn_use = [dn_use self]; end % if self is hidden we must consider its dimension | |
26 dps_as_cps = domain(CPD.dps_as_cps.ndx); | |
27 odom = domain(~isemptycell(evidence(domain))); | |
28 | |
29 ns = zeros(1, max(domain)); | |
30 ns(domain) = CPD.sizes; % CPD.sizes = bnet.node_sizes([ps self]); | |
31 ens = ns; % effective node sizes | |
32 ens(odom) = 1; | |
33 dpsize = prod(ns(dps)); | |
34 | |
35 % Extract the params compatible with the observations (if any) on the discrete parents (if any) | |
36 dops = myintersect(dps, odom); | |
37 dpvals = cat(1, evidence{dops}); | |
38 | |
39 subs = ind2subv(ens(dn_use), 1:prod(ens(dn_use))); | |
40 dpmap = find_equiv_posns(dops, dn_use); | |
41 if ~isempty(dpmap), subs(:,dpmap) = subs(:,dpmap)+repmat(dpvals(:)',[size(subs,1) 1])-1; end | |
42 supportedQs = subv2ind(ns(dn_use), subs); subs=subs(1:prod(ens(dps)),1:length(dps)); | |
43 Qarity = prod(ns(dn_use)); | |
44 if isempty(dn_use), Qarity = 1; end | |
45 | |
46 fullm.T = zeros(Qarity, 1); | |
47 fullm.T(supportedQs) = fmarginal.T(:); | |
48 rs_dim = CPD.sizes; rs_dim(CPD.cpndx) = 1; % | |
49 if ~isempty(evidence{self}), rs_dim(end)=1; end % reshaping the marginal | |
50 fullm.T = reshape(fullm.T, rs_dim); % | |
51 | |
52 % --------------------------------------------------------------------------------UPDATE-- | |
53 | |
54 CPD.nsamples = CPD.nsamples + 1; | |
55 | |
56 % 1) observations vector -> CPD.parents_vals --------------------------------------------- | |
57 cpvals = cat(1, evidence{cps}); | |
58 | |
59 if ~isempty(dps_as_cps), % ...get in the dp_as_cp parents... | |
60 separator = CPD.dps_as_cps.separator; | |
61 dp_as_cpmap = find_equiv_posns(dps_as_cps, dps); | |
62 for i=1:dpsize, | |
63 dp_as_cpvals=zeros(1,sum(ns(dps_as_cps))); | |
64 possible_vals = ind2subv(ns(dps),i); | |
65 ll=find(ismember(subs(:,dp_as_cpmap), possible_vals(dp_as_cpmap), 'rows')==1); | |
66 if ~isempty(ll), | |
67 where_one = separator + possible_vals(dp_as_cpmap); | |
68 dp_as_cpvals(where_one)=1; | |
69 end | |
70 CPD.parent_vals(CPD.nsamples,:,i) = [dp_as_cpvals(:); cpvals(:)]'; | |
71 end | |
72 else | |
73 CPD.parent_vals(CPD.nsamples,:) = cpvals(:)'; | |
74 end | |
75 | |
76 % 2) weights vector -> CPD.eso_weights ---------------------------------------------------- | |
77 if isempty(evidence{self}), % self is hidden | |
78 pesi=reshape(sum(fullm.T, length(rs_dim)),[dpsize,1]); | |
79 else | |
80 pesi=reshape(fullm.T,[dpsize,1]); | |
81 end | |
82 assert(approxeq(sum(pesi),1)); % check | |
83 | |
84 % 3) estimate (if R is hidden) or recover (if R is obs) self'value------------------------- | |
85 if isempty(evidence{self}) % P(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) | |
86 r=reshape(mk_stochastic(fullm.T), [dpsize ns(self)]); % matrix size: prod{j,ns(Paj)} x ns(self) | |
87 else | |
88 r = zeros(dpsize,ns(self)); | |
89 for i=1:dpsize, if pesi(i)~=0, r(i,evidence{self}) = 1; end; end | |
90 end | |
91 for i=1:dpsize, if pesi(i)~=0, assert(approxeq(sum(r(i,:)),1)); end; end % check | |
92 | |
93 % 4) save the previous values -------------------------------------------------------------- | |
94 for i=1:dpsize | |
95 CPD.eso_weights(CPD.nsamples,:,i)=pesi(i); | |
96 CPD.self_vals(CPD.nsamples,:,i) = r(i,:); | |
97 end |