Mercurial > hg > camir-ismir2012
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/glmhess.htm @ 0:cc4b1211e677 tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
| author | Daniel Wolff |
|---|---|
| date | Fri, 19 Aug 2016 13:07:06 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:cc4b1211e677 |
|---|---|
| 1 <html> | |
| 2 <head> | |
| 3 <title> | |
| 4 Netlab Reference Manual glmhess | |
| 5 </title> | |
| 6 </head> | |
| 7 <body> | |
| 8 <H1> glmhess | |
| 9 </H1> | |
| 10 <h2> | |
| 11 Purpose | |
| 12 </h2> | |
| 13 Evaluate the Hessian matrix for a generalised linear model. | |
| 14 | |
| 15 <p><h2> | |
| 16 Synopsis | |
| 17 </h2> | |
| 18 <PRE> | |
| 19 h = glmhess(net, x, t) | |
| 20 [h, hdata] = glmhess(net, x, t) | |
| 21 h = glmhess(net, x, t, hdata) | |
| 22 </PRE> | |
| 23 | |
| 24 | |
| 25 <p><h2> | |
| 26 Description | |
| 27 </h2> | |
| 28 <CODE>h = glmhess(net, x, t)</CODE> takes a GLM network data structure <CODE>net</CODE>, | |
| 29 a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of target | |
| 30 values and returns the full Hessian matrix <CODE>h</CODE> corresponding to | |
| 31 the second derivatives of the negative log posterior distribution, | |
| 32 evaluated for the current weight and bias values as defined by | |
| 33 <CODE>net</CODE>. Note that the target data is not required in the calculation, | |
| 34 but is included to make the interface uniform with <CODE>nethess</CODE>. For | |
| 35 linear and logistic outputs, the computation is very simple and is | |
| 36 done (in effect) in one line in <CODE>glmtrain</CODE>. | |
| 37 | |
| 38 <p><CODE>[h, hdata] = glmhess(net, x, t)</CODE> returns both the Hessian matrix | |
| 39 <CODE>h</CODE> and the contribution <CODE>hdata</CODE> arising from the data dependent | |
| 40 term in the Hessian. | |
| 41 | |
| 42 <p><CODE>h = glmhess(net, x, t, hdata)</CODE> takes a network data structure | |
| 43 <CODE>net</CODE>, a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of | |
| 44 target values, together with the contribution <CODE>hdata</CODE> arising from | |
| 45 the data dependent term in the Hessian, and returns the full Hessian | |
| 46 matrix <CODE>h</CODE> corresponding to the second derivatives of the negative | |
| 47 log posterior distribution. This version saves computation time if | |
| 48 <CODE>hdata</CODE> has already been evaluated for the current weight and bias | |
| 49 values. | |
| 50 | |
| 51 <p><h2> | |
| 52 Example | |
| 53 </h2> | |
| 54 The Hessian matrix is used by <CODE>glmtrain</CODE> to take a Newton step for | |
| 55 softmax outputs. | |
| 56 <PRE> | |
| 57 | |
| 58 Hessian = glmhess(net, x, t); | |
| 59 deltaw = -gradient*pinv(Hessian); | |
| 60 </PRE> | |
| 61 | |
| 62 | |
| 63 <p><h2> | |
| 64 See Also | |
| 65 </h2> | |
| 66 <CODE><a href="glm.htm">glm</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE>, <CODE><a href="hesschek.htm">hesschek</a></CODE>, <CODE><a href="nethess.htm">nethess</a></CODE><hr> | |
| 67 <b>Pages:</b> | |
| 68 <a href="index.htm">Index</a> | |
| 69 <hr> | |
| 70 <p>Copyright (c) Ian T Nabney (1996-9) | |
| 71 | |
| 72 | |
| 73 </body> | |
| 74 </html> |
