Daniel@0
|
1 function [W, Xi, Diagnostics] = mlr_train(X, Y, C, varargin)
|
Daniel@0
|
2 %
|
Daniel@0
|
3 % [W, Xi, D] = mlr_train(X, Y, C,...)
|
Daniel@0
|
4 %
|
Daniel@0
|
5 % X = d*n data matrix
|
Daniel@0
|
6 % Y = either n-by-1 label of vectors
|
Daniel@0
|
7 % OR
|
Daniel@0
|
8 % n-by-2 cell array where
|
Daniel@0
|
9 % Y{q,1} contains relevant indices for q, and
|
Daniel@0
|
10 % Y{q,2} contains irrelevant indices for q
|
Daniel@0
|
11 %
|
Daniel@0
|
12 % C >= 0 slack trade-off parameter (default=1)
|
Daniel@0
|
13 %
|
Daniel@0
|
14 % W = the learned metric
|
Daniel@0
|
15 % Xi = slack value on the learned metric
|
Daniel@0
|
16 % D = diagnostics
|
Daniel@0
|
17 %
|
Daniel@0
|
18 % Optional arguments:
|
Daniel@0
|
19 %
|
Daniel@0
|
20 % [W, Xi, D] = mlr_train(X, Y, C, LOSS)
|
Daniel@0
|
21 % where LOSS is one of:
|
Daniel@0
|
22 % 'AUC': Area under ROC curve (default)
|
Daniel@0
|
23 % 'KNN': KNN accuracy
|
Daniel@0
|
24 % 'Prec@k': Precision-at-k
|
Daniel@0
|
25 % 'MAP': Mean Average Precision
|
Daniel@0
|
26 % 'MRR': Mean Reciprocal Rank
|
Daniel@0
|
27 % 'NDCG': Normalized Discounted Cumulative Gain
|
Daniel@0
|
28 %
|
Daniel@0
|
29 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k)
|
Daniel@0
|
30 % where k is the number of neighbors for Prec@k or NDCG
|
Daniel@0
|
31 % (default=3)
|
Daniel@0
|
32 %
|
Daniel@0
|
33 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG)
|
Daniel@0
|
34 % where REG defines the regularization on W, and is one of:
|
Daniel@0
|
35 % 0: no regularization
|
Daniel@0
|
36 % 1: 1-norm: trace(W) (default)
|
Daniel@0
|
37 % 2: 2-norm: trace(W' * W)
|
Daniel@0
|
38 % 3: Kernel: trace(W * X), assumes X is square and positive-definite
|
Daniel@0
|
39 %
|
Daniel@0
|
40 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal)
|
Daniel@0
|
41 % Diagonal = 0: learn a full d-by-d W (default)
|
Daniel@0
|
42 % Diagonal = 1: learn diagonally-constrained W (d-by-1)
|
Daniel@0
|
43 %
|
Daniel@0
|
44 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B)
|
Daniel@0
|
45 % where B > 0 enables stochastic optimization with batch size B
|
Daniel@0
|
46 %
|
Daniel@0
|
47 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, CC)
|
Daniel@0
|
48 % Set ConstraintClock to CC (default: 20, 100)
|
Daniel@0
|
49 %
|
Daniel@0
|
50 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, CC, E)
|
Daniel@0
|
51 % Set ConstraintClock to E (default: 1e-3)
|
Daniel@0
|
52 %
|
Daniel@0
|
53
|
Daniel@0
|
54
|
Daniel@0
|
55 global globalvars;
|
Daniel@0
|
56 global DEBUG;
|
Daniel@0
|
57
|
Daniel@0
|
58 if isfield(globalvars, 'debug')
|
Daniel@0
|
59
|
Daniel@0
|
60 DEBUG = globalvars.debug;
|
Daniel@0
|
61 else
|
Daniel@0
|
62
|
Daniel@0
|
63 DEBUG = 0;
|
Daniel@0
|
64 end
|
Daniel@0
|
65
|
Daniel@0
|
66
|
Daniel@0
|
67
|
Daniel@0
|
68 TIME_START = tic();
|
Daniel@0
|
69
|
Daniel@0
|
70 % addpath('cuttingPlane', 'distance', 'feasible', 'initialize', 'loss', ...
|
Daniel@0
|
71 % 'metricPsi', 'regularize', 'separationOracle', 'util');
|
Daniel@0
|
72
|
Daniel@0
|
73 [d,n,m] = size(X);
|
Daniel@0
|
74
|
Daniel@0
|
75 if m > 1
|
Daniel@0
|
76 MKL = 1;
|
Daniel@0
|
77 else
|
Daniel@0
|
78 MKL = 0;
|
Daniel@0
|
79 end
|
Daniel@0
|
80
|
Daniel@0
|
81 if nargin < 3
|
Daniel@0
|
82 C = 1;
|
Daniel@0
|
83 end
|
Daniel@0
|
84
|
Daniel@0
|
85 %%%
|
Daniel@0
|
86 % Default options:
|
Daniel@0
|
87
|
Daniel@0
|
88 global CP SO PSI REG FEASIBLE LOSS DISTANCE SETDISTANCE CPGRADIENT METRICK;
|
Daniel@0
|
89
|
Daniel@0
|
90 CP = @cuttingPlaneFull;
|
Daniel@0
|
91 SO = @separationOracleAUC;
|
Daniel@0
|
92 PSI = @metricPsiPO;
|
Daniel@0
|
93
|
Daniel@0
|
94 if ~MKL
|
Daniel@0
|
95 INIT = @initializeFull;
|
Daniel@0
|
96 REG = @regularizeTraceFull;
|
Daniel@0
|
97 FEASIBLE = @feasibleFull;
|
Daniel@0
|
98 CPGRADIENT = @cpGradientFull;
|
Daniel@0
|
99 DISTANCE = @distanceFull;
|
Daniel@0
|
100 SETDISTANCE = @setDistanceFull;
|
Daniel@0
|
101 LOSS = @lossHinge;
|
Daniel@0
|
102 Regularizer = 'Trace';
|
Daniel@0
|
103 else
|
Daniel@0
|
104 INIT = @initializeFullMKL;
|
Daniel@0
|
105 REG = @regularizeMKLFull;
|
Daniel@0
|
106 FEASIBLE = @feasibleFullMKL;
|
Daniel@0
|
107 CPGRADIENT = @cpGradientFullMKL;
|
Daniel@0
|
108 DISTANCE = @distanceFullMKL;
|
Daniel@0
|
109 SETDISTANCE = @setDistanceFullMKL;
|
Daniel@0
|
110 LOSS = @lossHingeFullMKL;
|
Daniel@0
|
111 Regularizer = 'Trace';
|
Daniel@0
|
112 end
|
Daniel@0
|
113
|
Daniel@0
|
114
|
Daniel@0
|
115 Loss = 'AUC';
|
Daniel@0
|
116 Feature = 'metricPsiPO';
|
Daniel@0
|
117
|
Daniel@0
|
118
|
Daniel@0
|
119 %%%
|
Daniel@0
|
120 % Default k for prec@k, ndcg
|
Daniel@0
|
121 k = 3;
|
Daniel@0
|
122
|
Daniel@0
|
123 %%%
|
Daniel@0
|
124 % Stochastic violator selection?
|
Daniel@0
|
125 STOCHASTIC = 0;
|
Daniel@0
|
126 batchSize = n;
|
Daniel@0
|
127 SAMPLES = 1:n;
|
Daniel@0
|
128
|
Daniel@0
|
129
|
Daniel@0
|
130 if nargin > 3
|
Daniel@0
|
131 switch lower(varargin{1})
|
Daniel@0
|
132 case {'auc'}
|
Daniel@0
|
133 SO = @separationOracleAUC;
|
Daniel@0
|
134 PSI = @metricPsiPO;
|
Daniel@0
|
135 Loss = 'AUC';
|
Daniel@0
|
136 Feature = 'metricPsiPO';
|
Daniel@0
|
137 case {'knn'}
|
Daniel@0
|
138 SO = @separationOracleKNN;
|
Daniel@0
|
139 PSI = @metricPsiPO;
|
Daniel@0
|
140 Loss = 'KNN';
|
Daniel@0
|
141 Feature = 'metricPsiPO';
|
Daniel@0
|
142 case {'prec@k'}
|
Daniel@0
|
143 SO = @separationOraclePrecAtK;
|
Daniel@0
|
144 PSI = @metricPsiPO;
|
Daniel@0
|
145 Loss = 'Prec@k';
|
Daniel@0
|
146 Feature = 'metricPsiPO';
|
Daniel@0
|
147 case {'map'}
|
Daniel@0
|
148 SO = @separationOracleMAP;
|
Daniel@0
|
149 PSI = @metricPsiPO;
|
Daniel@0
|
150 Loss = 'MAP';
|
Daniel@0
|
151 Feature = 'metricPsiPO';
|
Daniel@0
|
152 case {'mrr'}
|
Daniel@0
|
153 SO = @separationOracleMRR;
|
Daniel@0
|
154 PSI = @metricPsiPO;
|
Daniel@0
|
155 Loss = 'MRR';
|
Daniel@0
|
156 Feature = 'metricPsiPO';
|
Daniel@0
|
157 case {'ndcg'}
|
Daniel@0
|
158 SO = @separationOracleNDCG;
|
Daniel@0
|
159 PSI = @metricPsiPO;
|
Daniel@0
|
160 Loss = 'NDCG';
|
Daniel@0
|
161 Feature = 'metricPsiPO';
|
Daniel@0
|
162 otherwise
|
Daniel@0
|
163 error('MLR:LOSS', ...
|
Daniel@0
|
164 'Unknown loss function: %s', varargin{1});
|
Daniel@0
|
165 end
|
Daniel@0
|
166 end
|
Daniel@0
|
167
|
Daniel@0
|
168 if nargin > 4
|
Daniel@0
|
169 k = varargin{2};
|
Daniel@0
|
170 end
|
Daniel@0
|
171
|
Daniel@0
|
172 METRICK = k;
|
Daniel@0
|
173
|
Daniel@0
|
174 Diagonal = 0;
|
Daniel@0
|
175 if nargin > 6 & varargin{4} > 0
|
Daniel@0
|
176 Diagonal = varargin{4};
|
Daniel@0
|
177
|
Daniel@0
|
178 if ~MKL
|
Daniel@0
|
179 INIT = @initializeDiag;
|
Daniel@0
|
180 REG = @regularizeTraceDiag;
|
Daniel@0
|
181 FEASIBLE = @feasibleDiag;
|
Daniel@0
|
182 CPGRADIENT = @cpGradientDiag;
|
Daniel@0
|
183 DISTANCE = @distanceDiag;
|
Daniel@0
|
184 SETDISTANCE = @setDistanceDiag;
|
Daniel@0
|
185 Regularizer = 'Trace';
|
Daniel@0
|
186 else
|
Daniel@0
|
187 if Diagonal > 1
|
Daniel@0
|
188 INIT = @initializeDODMKL;
|
Daniel@0
|
189 REG = @regularizeMKLDOD;
|
Daniel@0
|
190 FEASIBLE = @feasibleDODMKL;
|
Daniel@0
|
191 CPGRADIENT = @cpGradientDODMKL;
|
Daniel@0
|
192 DISTANCE = @distanceDODMKL;
|
Daniel@0
|
193 SETDISTANCE = @setDistanceDODMKL;
|
Daniel@0
|
194 LOSS = @lossHingeDODMKL;
|
Daniel@0
|
195 Regularizer = 'Trace';
|
Daniel@0
|
196 else
|
Daniel@0
|
197 INIT = @initializeDiagMKL;
|
Daniel@0
|
198 REG = @regularizeMKLDiag;
|
Daniel@0
|
199 FEASIBLE = @feasibleDiagMKL;
|
Daniel@0
|
200 CPGRADIENT = @cpGradientDiagMKL;
|
Daniel@0
|
201 DISTANCE = @distanceDiagMKL;
|
Daniel@0
|
202 SETDISTANCE = @setDistanceDiagMKL;
|
Daniel@0
|
203 LOSS = @lossHingeDiagMKL;
|
Daniel@0
|
204 Regularizer = 'Trace';
|
Daniel@0
|
205 end
|
Daniel@0
|
206 end
|
Daniel@0
|
207 end
|
Daniel@0
|
208
|
Daniel@0
|
209 if nargin > 5
|
Daniel@0
|
210 switch(varargin{3})
|
Daniel@0
|
211 case {0}
|
Daniel@0
|
212 REG = @regularizeNone;
|
Daniel@0
|
213 Regularizer = 'None';
|
Daniel@0
|
214
|
Daniel@0
|
215 case {1}
|
Daniel@0
|
216 if MKL
|
Daniel@0
|
217 if Diagonal == 0
|
Daniel@0
|
218 REG = @regularizeMKLFull;
|
Daniel@0
|
219 elseif Diagonal == 1
|
Daniel@0
|
220 REG = @regularizeMKLDiag;
|
Daniel@0
|
221 elseif Diagonal == 2
|
Daniel@0
|
222 REG = @regularizeMKLDOD;
|
Daniel@0
|
223 end
|
Daniel@0
|
224 else
|
Daniel@0
|
225 if Diagonal
|
Daniel@0
|
226 REG = @regularizeTraceDiag;
|
Daniel@0
|
227 else
|
Daniel@0
|
228 REG = @regularizeTraceFull;
|
Daniel@0
|
229 end
|
Daniel@0
|
230 end
|
Daniel@0
|
231 Regularizer = 'Trace';
|
Daniel@0
|
232
|
Daniel@0
|
233 case {2}
|
Daniel@0
|
234 if Diagonal
|
Daniel@0
|
235 REG = @regularizeTwoDiag;
|
Daniel@0
|
236 else
|
Daniel@0
|
237 REG = @regularizeTwoFull;
|
Daniel@0
|
238 end
|
Daniel@0
|
239 Regularizer = '2-norm';
|
Daniel@0
|
240
|
Daniel@0
|
241 case {3}
|
Daniel@0
|
242 if MKL
|
Daniel@0
|
243 if Diagonal == 0
|
Daniel@0
|
244 REG = @regularizeMKLFull;
|
Daniel@0
|
245 elseif Diagonal == 1
|
Daniel@0
|
246 REG = @regularizeMKLDiag;
|
Daniel@0
|
247 elseif Diagonal == 2
|
Daniel@0
|
248 REG = @regularizeMKLDOD;
|
Daniel@0
|
249 end
|
Daniel@0
|
250 else
|
Daniel@0
|
251 if Diagonal
|
Daniel@0
|
252 REG = @regularizeMKLDiag;
|
Daniel@0
|
253 else
|
Daniel@0
|
254 REG = @regularizeKernel;
|
Daniel@0
|
255 end
|
Daniel@0
|
256 end
|
Daniel@0
|
257 Regularizer = 'Kernel';
|
Daniel@0
|
258
|
Daniel@0
|
259 otherwise
|
Daniel@0
|
260 error('MLR:REGULARIZER', ...
|
Daniel@0
|
261 'Unknown regularization: %s', varargin{3});
|
Daniel@0
|
262 end
|
Daniel@0
|
263 end
|
Daniel@0
|
264
|
Daniel@0
|
265
|
Daniel@0
|
266 % Are we in stochastic optimization mode?
|
Daniel@0
|
267 if nargin > 7 && varargin{5} > 0
|
Daniel@0
|
268 if varargin{5} < n
|
Daniel@0
|
269 STOCHASTIC = 1;
|
Daniel@0
|
270 CP = @cuttingPlaneRandom;
|
Daniel@0
|
271 batchSize = varargin{5};
|
Daniel@0
|
272 end
|
Daniel@0
|
273 end
|
Daniel@0
|
274
|
Daniel@0
|
275 %%%
|
Daniel@0
|
276 % Timer to eliminate old constraints
|
Daniel@0
|
277 ConstraintClock = 20;
|
Daniel@0
|
278
|
Daniel@0
|
279 if nargin > 8 && varargin{6} > 0
|
Daniel@0
|
280 ConstraintClock = varargin{6};
|
Daniel@0
|
281 end
|
Daniel@0
|
282
|
Daniel@0
|
283 %%%
|
Daniel@0
|
284 % Convergence criteria for worst-violated constraint
|
Daniel@0
|
285 E = 1e-3;
|
Daniel@0
|
286 if nargin > 9 && varargin{7} > 0
|
Daniel@0
|
287 E = varargin{7};
|
Daniel@0
|
288 end
|
Daniel@0
|
289
|
Daniel@0
|
290 % Algorithm
|
Daniel@0
|
291 %
|
Daniel@0
|
292 % Working <- []
|
Daniel@0
|
293 %
|
Daniel@0
|
294 % repeat:
|
Daniel@0
|
295 % (W, Xi) <- solver(X, Y, C, Working)
|
Daniel@0
|
296 %
|
Daniel@0
|
297 % for i = 1:|X|
|
Daniel@0
|
298 % y^_i <- argmax_y^ ( Delta(y*_i, y^) + w' Psi(x_i, y^) )
|
Daniel@0
|
299 %
|
Daniel@0
|
300 % Working <- Working + (y^_1,y^_2,...,y^_n)
|
Daniel@0
|
301 % until mean(Delta(y*_i, y_i)) - mean(w' (Psi(x_i,y_i) - Psi(x_i,y^_i)))
|
Daniel@0
|
302 % <= Xi + epsilon
|
Daniel@0
|
303
|
Daniel@0
|
304
|
Daniel@0
|
305
|
Daniel@0
|
306
|
Daniel@0
|
307
|
Daniel@0
|
308 % Initialize
|
Daniel@0
|
309 W = INIT(X);
|
Daniel@0
|
310
|
Daniel@0
|
311 ClassScores = [];
|
Daniel@0
|
312
|
Daniel@0
|
313 if isa(Y, 'double')
|
Daniel@0
|
314 Ypos = [];
|
Daniel@0
|
315 Yneg = [];
|
Daniel@0
|
316 ClassScores = synthesizeRelevance(Y);
|
Daniel@0
|
317
|
Daniel@0
|
318 elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 2
|
Daniel@0
|
319 dbprint(2, 'Using supplied Ypos/Yneg');
|
Daniel@0
|
320 Ypos = Y(:,1);
|
Daniel@0
|
321 Yneg = Y(:,2);
|
Daniel@0
|
322
|
Daniel@0
|
323 % Compute the valid samples
|
Daniel@0
|
324 SAMPLES = find( ~(cellfun(@isempty, Y(:,1)) | cellfun(@isempty, Y(:,2))));
|
Daniel@0
|
325 elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 1
|
Daniel@0
|
326 dbprint(2, 'Using supplied Ypos/synthesized Yneg');
|
Daniel@0
|
327 Ypos = Y(:,1);
|
Daniel@0
|
328 Yneg = [];
|
Daniel@0
|
329 SAMPLES = find( ~(cellfun(@isempty, Y(:,1))));
|
Daniel@0
|
330 else
|
Daniel@0
|
331 error('MLR:LABELS', 'Incorrect format for Y.');
|
Daniel@0
|
332 end
|
Daniel@0
|
333
|
Daniel@0
|
334
|
Daniel@0
|
335 Diagnostics = struct( 'loss', Loss, ... % Which loss are we optimizing?
|
Daniel@0
|
336 'feature', Feature, ... % Which ranking feature is used?
|
Daniel@0
|
337 'k', k, ... % What is the ranking length?
|
Daniel@0
|
338 'regularizer', Regularizer, ... % What regularization is used?
|
Daniel@0
|
339 'diagonal', Diagonal, ... % 0 for full metric, 1 for diagonal
|
Daniel@0
|
340 'num_calls_SO', 0, ... % Calls to separation oracle
|
Daniel@0
|
341 'num_calls_solver', 0, ... % Calls to solver
|
Daniel@0
|
342 'time_SO', 0, ... % Time in separation oracle
|
Daniel@0
|
343 'time_solver', 0, ... % Time in solver
|
Daniel@0
|
344 'time_total', 0, ... % Total time
|
Daniel@0
|
345 'f', [], ... % Objective value
|
Daniel@0
|
346 'num_steps', [], ... % Number of steps for each solver run
|
Daniel@0
|
347 'num_constraints', [], ... % Number of constraints for each run
|
Daniel@0
|
348 'Xi', [], ... % Slack achieved for each run
|
Daniel@0
|
349 'Delta', [], ... % Mean loss for each SO call
|
Daniel@0
|
350 'gap', [], ... % Gap between loss and slack
|
Daniel@0
|
351 'C', C, ... % Slack trade-off
|
Daniel@0
|
352 'epsilon', E, ... % Convergence threshold
|
Daniel@0
|
353 'constraint_timer', ConstraintClock); % Time before evicting old constraints
|
Daniel@0
|
354
|
Daniel@0
|
355
|
Daniel@0
|
356
|
Daniel@0
|
357 global PsiR;
|
Daniel@0
|
358 global PsiClock;
|
Daniel@0
|
359
|
Daniel@0
|
360 PsiR = {};
|
Daniel@0
|
361 PsiClock = [];
|
Daniel@0
|
362
|
Daniel@0
|
363 Xi = -Inf;
|
Daniel@0
|
364 Margins = [];
|
Daniel@0
|
365
|
Daniel@0
|
366 if STOCHASTIC
|
Daniel@0
|
367 dbprint(2, 'STOCHASTIC OPTIMIZATION: Batch size is %d/%d', batchSize, n);
|
Daniel@0
|
368 end
|
Daniel@0
|
369
|
Daniel@0
|
370 while 1
|
Daniel@0
|
371 dbprint(2, 'Round %03d', Diagnostics.num_calls_solver);
|
Daniel@0
|
372 % Generate a constraint set
|
Daniel@0
|
373 Termination = 0;
|
Daniel@0
|
374
|
Daniel@0
|
375
|
Daniel@0
|
376 dbprint(2, 'Calling separation oracle...');
|
Daniel@0
|
377
|
Daniel@0
|
378 [PsiNew, Mnew, SO_time] = CP(k, X, W, Ypos, Yneg, batchSize, SAMPLES, ClassScores);
|
Daniel@0
|
379 Termination = LOSS(W, PsiNew, Mnew, 0);
|
Daniel@0
|
380
|
Daniel@0
|
381 Diagnostics.num_calls_SO = Diagnostics.num_calls_SO + 1;
|
Daniel@0
|
382 Diagnostics.time_SO = Diagnostics.time_SO + SO_time;
|
Daniel@0
|
383
|
Daniel@0
|
384 Margins = cat(1, Margins, Mnew);
|
Daniel@0
|
385 PsiR = cat(1, PsiR, PsiNew);
|
Daniel@0
|
386 PsiClock = cat(1, PsiClock, 0);
|
Daniel@0
|
387
|
Daniel@0
|
388 dbprint(2, '\n\tActive constraints : %d', length(PsiClock));
|
Daniel@0
|
389 dbprint(2, '\t Mean loss : %0.4f', Mnew);
|
Daniel@0
|
390 dbprint(2, '\t Termination -Xi < E : %0.4f <? %.04f\n', Termination - Xi, E);
|
Daniel@0
|
391
|
Daniel@0
|
392 Diagnostics.gap = cat(1, Diagnostics.gap, Termination - Xi);
|
Daniel@0
|
393 Diagnostics.Delta = cat(1, Diagnostics.Delta, Mnew);
|
Daniel@0
|
394
|
Daniel@0
|
395 if Termination <= Xi + E
|
Daniel@0
|
396 dbprint(2, 'Done.');
|
Daniel@0
|
397 break;
|
Daniel@0
|
398 end
|
Daniel@0
|
399
|
Daniel@0
|
400 dbprint(2, 'Calling solver...');
|
Daniel@0
|
401 PsiClock = PsiClock + 1;
|
Daniel@0
|
402 Solver_time = tic();
|
Daniel@0
|
403 [W, Xi, Dsolver] = mlr_solver(C, Margins, W, X);
|
Daniel@0
|
404 Diagnostics.time_solver = Diagnostics.time_solver + toc(Solver_time);
|
Daniel@0
|
405 Diagnostics.num_calls_solver = Diagnostics.num_calls_solver + 1;
|
Daniel@0
|
406
|
Daniel@0
|
407 Diagnostics.Xi = cat(1, Diagnostics.Xi, Xi);
|
Daniel@0
|
408 Diagnostics.f = cat(1, Diagnostics.f, Dsolver.f);
|
Daniel@0
|
409 Diagnostics.num_steps = cat(1, Diagnostics.num_steps, Dsolver.num_steps);
|
Daniel@0
|
410
|
Daniel@0
|
411 %%%
|
Daniel@0
|
412 % Cull the old constraints
|
Daniel@0
|
413 GC = PsiClock < ConstraintClock;
|
Daniel@0
|
414 Margins = Margins(GC);
|
Daniel@0
|
415 PsiR = PsiR(GC);
|
Daniel@0
|
416 PsiClock = PsiClock(GC);
|
Daniel@0
|
417
|
Daniel@0
|
418 Diagnostics.num_constraints = cat(1, Diagnostics.num_constraints, length(PsiR));
|
Daniel@0
|
419 end
|
Daniel@0
|
420
|
Daniel@0
|
421
|
Daniel@0
|
422 % Finish diagnostics
|
Daniel@0
|
423
|
Daniel@0
|
424 Diagnostics.time_total = toc(TIME_START);
|
Daniel@0
|
425 end
|
Daniel@0
|
426
|
Daniel@0
|
427
|
Daniel@0
|
428 function ClassScores = synthesizeRelevance(Y)
|
Daniel@0
|
429
|
Daniel@0
|
430 classes = unique(Y);
|
Daniel@0
|
431 nClasses = length(classes);
|
Daniel@0
|
432
|
Daniel@0
|
433 ClassScores = struct( 'Y', Y, ...
|
Daniel@0
|
434 'classes', classes, ...
|
Daniel@0
|
435 'Ypos', [], ...
|
Daniel@0
|
436 'Yneg', []);
|
Daniel@0
|
437
|
Daniel@0
|
438 Ypos = cell(nClasses, 1);
|
Daniel@0
|
439 Yneg = cell(nClasses, 1);
|
Daniel@0
|
440 for c = 1:nClasses
|
Daniel@0
|
441 Ypos{c} = (Y == classes(c));
|
Daniel@0
|
442 Yneg{c} = ~Ypos{c};
|
Daniel@0
|
443 end
|
Daniel@0
|
444
|
Daniel@0
|
445 ClassScores.Ypos = Ypos;
|
Daniel@0
|
446 ClassScores.Yneg = Yneg;
|
Daniel@0
|
447
|
Daniel@0
|
448 end
|