annotate toolboxes/distance_learning/mlr/distance/setDistanceFullMKL.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function D = setDistanceFullMKL(X, W, Ifrom, Ito)
Daniel@0 2 %
Daniel@0 3 % D = setDistanceFullMKL(X, W, Ifrom, Ito)
Daniel@0 4 %
Daniel@0 5 % X = d-by-n-by-m data matrix
Daniel@0 6 % W = d-by-d-by-m PSD matrix
Daniel@0 7 % Ifrom = k-by-1 vector of source points
Daniel@0 8 % Ito = j-by-1 vector of destination points
Daniel@0 9 %
Daniel@0 10 % D = n-by-n matrix of squared euclidean distances from Ifrom to Ito
Daniel@0 11 % D is sparse, and only the rows corresponding to Ifrom and
Daniel@0 12 % columns corresponding to Ito are populated.
Daniel@0 13
Daniel@0 14 [d,n,m] = size(X);
Daniel@0 15
Daniel@0 16 D = 0;
Daniel@0 17 for i = 1:m
Daniel@0 18 [vecs,vals] = eig(0.5 * (W(:,:,i) + W(:,:,i)'));
Daniel@0 19 L = real(abs(vals)).^0.5 * vecs';
Daniel@0 20
Daniel@0 21 Vfrom = L * X(:,Ifrom,i);
Daniel@0 22
Daniel@0 23 if nargin == 4
Daniel@0 24 Vto = L * X(:,Ito,i);
Daniel@0 25 else
Daniel@0 26 Vto = L * X(:,:,i);
Daniel@0 27 Ito = 1:n;
Daniel@0 28 end
Daniel@0 29
Daniel@0 30 D = D + distToFrom(n, Vto, Vfrom, Ito, Ifrom);
Daniel@0 31 end
Daniel@0 32 end