annotate toolboxes/SVM-light/Readme_optimization_relative_constraints.txt @ 0:cc4b1211e677
tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
author |
Daniel Wolff |
date |
Fri, 19 Aug 2016 13:07:06 +0200 |
parents |
|
children |
|
rev |
line source |
Daniel@0
|
1 Solving general optimization problems
|
Daniel@0
|
2 -------------------------------------
|
Daniel@0
|
3
|
Daniel@0
|
4 You can use SVM-light to solve general optimzation problems of the form:
|
Daniel@0
|
5
|
Daniel@0
|
6 min 0.5 w*w + C sum_i C_i \xi_i
|
Daniel@0
|
7 s.t. x_i * w > rhs_i - \xi_i
|
Daniel@0
|
8
|
Daniel@0
|
9 Use the option "-z o". This allows specifying a training set where the examples are the inequality constraints. For example, to specify the problem
|
Daniel@0
|
10
|
Daniel@0
|
11 min 0.5 w*w + 10 (1000 \xi_1 + 1 \xi_2 + 1 \xi_3 + 1 \xi_4)
|
Daniel@0
|
12 s.t. 1 w_1 >= 0 - \xi_1
|
Daniel@0
|
13 -2 w_1 >= 1 - \xi_2
|
Daniel@0
|
14 2 w_3 >= 2 - \xi_3
|
Daniel@0
|
15 2 w_2 + 1 w_3 >= 3 - \xi_4
|
Daniel@0
|
16
|
Daniel@0
|
17 you can use the training set
|
Daniel@0
|
18
|
Daniel@0
|
19 0 cost:10000 1:1
|
Daniel@0
|
20 1 1:-2
|
Daniel@0
|
21 2 3:2
|
Daniel@0
|
22 3 2:3 3:1
|
Daniel@0
|
23
|
Daniel@0
|
24 and run
|
Daniel@0
|
25
|
Daniel@0
|
26 svm_learn -c 10 -z o train.dat model
|
Daniel@0
|
27
|
Daniel@0
|
28 The format is just like the normal SVM-light format. Each line corresponds to one inequality. However, the first element of each line is the right-hand side of the inequality. The remainder of the line specifies the left-hand side. The parameter cost:<value> is optional and lets you specify a factor by which the value of the slack variable is weighted in the objective. The general regularization parameter (10 in the example) is specified with the option -c <value> on the command line.
|
Daniel@0
|
29
|
Daniel@0
|
30 To classify new inequalities, you can use svm_classify in the normal way. |