annotate toolboxes/MIRtoolbox1.3.2/somtoolbox/som_probability_gmm.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [pd,Pdm,pmd] = som_probability_gmm(D, sM, K, P)
Daniel@0 2
Daniel@0 3 %SOM_PROBABILITY_GMM Probabilities based on a gaussian mixture model.
Daniel@0 4 %
Daniel@0 5 % [pd,Pdm,pmd] = som_probability_gmm(D, sM, K, P)
Daniel@0 6 %
Daniel@0 7 % [K,P] = som_estimate_gmm(sM,D);
Daniel@0 8 % [pd,Pdm,pmd] = som_probability_gmm(D,sM,K,P);
Daniel@0 9 % som_show(sM,'color',pmd(:,1),'color',Pdm(:,1))
Daniel@0 10 %
Daniel@0 11 % Input and output arguments:
Daniel@0 12 % D (matrix) size dlen x dim, the data for which the
Daniel@0 13 % (struct) data struct, probabilities are calculated
Daniel@0 14 % sM (struct) map struct
Daniel@0 15 % (matrix) size munits x dim, the kernel centers
Daniel@0 16 % K (matrix) size munits x dim, kernel width parameters
Daniel@0 17 % computed by SOM_ESTIMATE_GMM
Daniel@0 18 % P (matrix) size 1 x munits, a priori probabilities for each
Daniel@0 19 % kernel computed by SOM_ESTIMATE_GMM
Daniel@0 20 %
Daniel@0 21 % pd (vector) size dlen x 1, probability of each data vector in
Daniel@0 22 % terms of the whole gaussian mixture model
Daniel@0 23 % Pdm (matrix) size munits x dlen, probability of each vector in
Daniel@0 24 % terms of each kernel
Daniel@0 25 % pmd (matrix) size munits x dlen, probability of each vector to
Daniel@0 26 % have been generated by each kernel
Daniel@0 27 %
Daniel@0 28 % See also SOM_ESTIMATE_GMM.
Daniel@0 29
Daniel@0 30 % Contributed to SOM Toolbox vs2, February 2nd, 2000 by Esa Alhoniemi
Daniel@0 31 % Copyright (c) by Esa Alhoniemi
Daniel@0 32 % http://www.cis.hut.fi/projects/somtoolbox/
Daniel@0 33
Daniel@0 34 % ecco 180298 juuso 050100
Daniel@0 35
Daniel@0 36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Daniel@0 37
Daniel@0 38 % input arguments
Daniel@0 39 if isstruct(sM), M = sM.codebook; else M = sM; end
Daniel@0 40 [c dim] = size(M);
Daniel@0 41
Daniel@0 42 if isstruct(D), D = D.data; end
Daniel@0 43 dlen = size(D,1);
Daniel@0 44
Daniel@0 45 % reserve space for output variables
Daniel@0 46 pd = zeros(dlen,1);
Daniel@0 47 if nargout>=2, Pdm = zeros(c,dlen); end
Daniel@0 48 if nargout==3, pmd = zeros(c,dlen); end
Daniel@0 49
Daniel@0 50 % the parameters of each kernel
Daniel@0 51 cCoeff = cell(c,1);
Daniel@0 52 cCoinv = cell(c,1);
Daniel@0 53 for m=1:c,
Daniel@0 54 co = diag(K(m,:));
Daniel@0 55 cCoinv{m} = inv(co);
Daniel@0 56 cCoeff{m} = 1 / ((2*pi)^(dim/2)*det(co)^.5);
Daniel@0 57 end
Daniel@0 58
Daniel@0 59 % go through the vectors one by one
Daniel@0 60 for i=1:dlen,
Daniel@0 61
Daniel@0 62 x = D(i,:);
Daniel@0 63
Daniel@0 64 % compute p(x|m)
Daniel@0 65 pxm = zeros(c,1);
Daniel@0 66 for m = 1:c,
Daniel@0 67 dx = M(m,:) - x;
Daniel@0 68 pxm(m) = cCoeff{m} * exp(-.5 * dx * cCoinv{m} * dx');
Daniel@0 69 %pxm(m) = normal(dx, zeros(1,dim), diag(K(m,:)));
Daniel@0 70 end
Daniel@0 71 pxm(isnan(pxm(:))) = 0;
Daniel@0 72
Daniel@0 73 % p(x|m)
Daniel@0 74 if nargin>=2, Pdm(:,i) = pxm; end
Daniel@0 75
Daniel@0 76 % P(x) = P(x|M) = sum( P(m) * p(x|m) )
Daniel@0 77 pd(i) = P*pxm;
Daniel@0 78
Daniel@0 79 % p(m|x) = p(x|m) * P(m) / P(x)
Daniel@0 80 if nargout==3, pmd(:,i) = (P' .* pxm) / pd(i); end
Daniel@0 81
Daniel@0 82 end
Daniel@0 83
Daniel@0 84
Daniel@0 85 return;
Daniel@0 86
Daniel@0 87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Daniel@0 88 %
Daniel@0 89 % subfunction normal
Daniel@0 90 %
Daniel@0 91 % computes probability of x when mean and covariance matrix
Daniel@0 92 % of a distribution are known
Daniel@0 93
Daniel@0 94 function result = normal(x, mu, co)
Daniel@0 95
Daniel@0 96 [l dim] = size(x);
Daniel@0 97 coinv = inv(co);
Daniel@0 98 coeff = 1 / ((2*pi)^(dim/2)*det(co)^.5);
Daniel@0 99 diff = x - mu;
Daniel@0 100 result = coeff * exp(-.5 * diff * coinv * diff');