annotate toolboxes/MIRtoolbox1.3.2/MIRToolbox/netlabkmeans.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [centres, options, post, errlog] = netlabkmeans(centres, data, options)
Daniel@0 2 %KMEANS Trains a k means cluster model.
Daniel@0 3 %(Renamed NETLABKMEANS in MIRtoolbox in order to avoid conflict with
Daniel@0 4 % statistics toolbox...)
Daniel@0 5 %
Daniel@0 6 % Description
Daniel@0 7 % CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means
Daniel@0 8 % algorithm to set the centres of a cluster model. The matrix DATA
Daniel@0 9 % represents the data which is being clustered, with each row
Daniel@0 10 % corresponding to a vector. The sum of squares error function is used.
Daniel@0 11 % The point at which a local minimum is achieved is returned as
Daniel@0 12 % CENTRES. The error value at that point is returned in OPTIONS(8).
Daniel@0 13 %
Daniel@0 14 % [CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS)
Daniel@0 15 % also returns the cluster number (in a one-of-N encoding) for each
Daniel@0 16 % data point in POST and a log of the error values after each cycle in
Daniel@0 17 % ERRLOG. The optional parameters have the following
Daniel@0 18 % interpretations.
Daniel@0 19 %
Daniel@0 20 % OPTIONS(1) is set to 1 to display error values; also logs error
Daniel@0 21 % values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then
Daniel@0 22 % only warning messages are displayed. If OPTIONS(1) is -1, then
Daniel@0 23 % nothing is displayed.
Daniel@0 24 %
Daniel@0 25 % OPTIONS(2) is a measure of the absolute precision required for the
Daniel@0 26 % value of CENTRES at the solution. If the absolute difference between
Daniel@0 27 % the values of CENTRES between two successive steps is less than
Daniel@0 28 % OPTIONS(2), then this condition is satisfied.
Daniel@0 29 %
Daniel@0 30 % OPTIONS(3) is a measure of the precision required of the error
Daniel@0 31 % function at the solution. If the absolute difference between the
Daniel@0 32 % error functions between two successive steps is less than OPTIONS(3),
Daniel@0 33 % then this condition is satisfied. Both this and the previous
Daniel@0 34 % condition must be satisfied for termination.
Daniel@0 35 %
Daniel@0 36 % OPTIONS(14) is the maximum number of iterations; default 100.
Daniel@0 37 %
Daniel@0 38 % See also
Daniel@0 39 % GMMINIT, GMMEM
Daniel@0 40 %
Daniel@0 41
Daniel@0 42 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 43
Daniel@0 44 [ndata, data_dim] = size(data);
Daniel@0 45 [ncentres, dim] = size(centres);
Daniel@0 46
Daniel@0 47 if dim ~= data_dim
Daniel@0 48 error('Data dimension does not match dimension of centres')
Daniel@0 49 end
Daniel@0 50
Daniel@0 51 if (ncentres > ndata)
Daniel@0 52 error('More centres than data')
Daniel@0 53 end
Daniel@0 54
Daniel@0 55 % Sort out the options
Daniel@0 56 if (options(14))
Daniel@0 57 niters = options(14);
Daniel@0 58 else
Daniel@0 59 niters = 100;
Daniel@0 60 end
Daniel@0 61
Daniel@0 62 store = 0;
Daniel@0 63 if (nargout > 3)
Daniel@0 64 store = 1;
Daniel@0 65 errlog = zeros(1, niters);
Daniel@0 66 end
Daniel@0 67
Daniel@0 68 % Check if centres and posteriors need to be initialised from data
Daniel@0 69 if (options(5) == 1)
Daniel@0 70 % Do the initialisation
Daniel@0 71 perm = randperm(ndata);
Daniel@0 72 perm = perm(1:ncentres);
Daniel@0 73
Daniel@0 74 % Assign first ncentres (permuted) data points as centres
Daniel@0 75 centres = data(perm, :);
Daniel@0 76 end
Daniel@0 77 % Matrix to make unit vectors easy to construct
Daniel@0 78 id = eye(ncentres);
Daniel@0 79
Daniel@0 80 % Main loop of algorithm
Daniel@0 81 for n = 1:niters
Daniel@0 82
Daniel@0 83 % Save old centres to check for termination
Daniel@0 84 old_centres = centres;
Daniel@0 85
Daniel@0 86 % Calculate posteriors based on existing centres
Daniel@0 87 d2 = dist2(data, centres);
Daniel@0 88 % Assign each point to nearest centre
Daniel@0 89 [minvals, index] = min(d2', [], 1);
Daniel@0 90 post = id(index,:);
Daniel@0 91
Daniel@0 92 num_points = sum(post, 1);
Daniel@0 93 % Adjust the centres based on new posteriors
Daniel@0 94 for j = 1:ncentres
Daniel@0 95 if (num_points(j) > 0)
Daniel@0 96 centres(j,:) = sum(data(find(post(:,j)),:), 1)/num_points(j);
Daniel@0 97 end
Daniel@0 98 end
Daniel@0 99
Daniel@0 100 % Error value is total squared distance from cluster centres
Daniel@0 101 e = sum(minvals);
Daniel@0 102 if store
Daniel@0 103 errlog(n) = e;
Daniel@0 104 end
Daniel@0 105 if options(1) > 0
Daniel@0 106 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e);
Daniel@0 107 end
Daniel@0 108
Daniel@0 109 if n > 1
Daniel@0 110 % Test for termination
Daniel@0 111 if max(max(abs(centres - old_centres))) < options(2) & ...
Daniel@0 112 abs(old_e - e) < options(3)
Daniel@0 113 options(8) = e;
Daniel@0 114 return;
Daniel@0 115 end
Daniel@0 116 end
Daniel@0 117 old_e = e;
Daniel@0 118 end
Daniel@0 119
Daniel@0 120 % If we get here, then we haven't terminated in the given number of
Daniel@0 121 % iterations.
Daniel@0 122 options(8) = e;
Daniel@0 123 if (options(1) >= 0)
Daniel@0 124 disp(maxitmess);
Daniel@0 125 end
Daniel@0 126