annotate toolboxes/FullBNT-1.0.7/netlab3.3/mlpinit.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function net = mlpinit(net, prior)
Daniel@0 2 %MLPINIT Initialise the weights in a 2-layer feedforward network.
Daniel@0 3 %
Daniel@0 4 % Description
Daniel@0 5 %
Daniel@0 6 % NET = MLPINIT(NET, PRIOR) takes a 2-layer feedforward network NET and
Daniel@0 7 % sets the weights and biases by sampling from a Gaussian distribution.
Daniel@0 8 % If PRIOR is a scalar, then all of the parameters (weights and biases)
Daniel@0 9 % are sampled from a single isotropic Gaussian with inverse variance
Daniel@0 10 % equal to PRIOR. If PRIOR is a data structure of the kind generated by
Daniel@0 11 % MLPPRIOR, then the parameters are sampled from multiple Gaussians
Daniel@0 12 % according to their groupings (defined by the INDEX field) with
Daniel@0 13 % corresponding variances (defined by the ALPHA field).
Daniel@0 14 %
Daniel@0 15 % See also
Daniel@0 16 % MLP, MLPPRIOR, MLPPAK, MLPUNPAK
Daniel@0 17 %
Daniel@0 18
Daniel@0 19 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 20
Daniel@0 21 if isstruct(prior)
Daniel@0 22 sig = 1./sqrt(prior.index*prior.alpha);
Daniel@0 23 w = sig'.*randn(1, net.nwts);
Daniel@0 24 elseif size(prior) == [1 1]
Daniel@0 25 w = randn(1, net.nwts).*sqrt(1/prior);
Daniel@0 26 else
Daniel@0 27 error('prior must be a scalar or a structure');
Daniel@0 28 end
Daniel@0 29
Daniel@0 30 net = mlpunpak(net, w);
Daniel@0 31