annotate toolboxes/FullBNT-1.0.7/netlab3.3/glmhess.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [h, hdata] = glmhess(net, x, t, hdata)
Daniel@0 2 %GLMHESS Evaluate the Hessian matrix for a generalised linear model.
Daniel@0 3 %
Daniel@0 4 % Description
Daniel@0 5 % H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a
Daniel@0 6 % matrix X of input values, and a matrix T of target values and returns
Daniel@0 7 % the full Hessian matrix H corresponding to the second derivatives of
Daniel@0 8 % the negative log posterior distribution, evaluated for the current
Daniel@0 9 % weight and bias values as defined by NET. Note that the target data
Daniel@0 10 % is not required in the calculation, but is included to make the
Daniel@0 11 % interface uniform with NETHESS. For linear and logistic outputs, the
Daniel@0 12 % computation is very simple and is done (in effect) in one line in
Daniel@0 13 % GLMTRAIN.
Daniel@0 14 %
Daniel@0 15 % [H, HDATA] = GLMHESS(NET, X, T) returns both the Hessian matrix H and
Daniel@0 16 % the contribution HDATA arising from the data dependent term in the
Daniel@0 17 % Hessian.
Daniel@0 18 %
Daniel@0 19 % H = GLMHESS(NET, X, T, HDATA) takes a network data structure NET, a
Daniel@0 20 % matrix X of input values, and a matrix T of target values, together
Daniel@0 21 % with the contribution HDATA arising from the data dependent term in
Daniel@0 22 % the Hessian, and returns the full Hessian matrix H corresponding to
Daniel@0 23 % the second derivatives of the negative log posterior distribution.
Daniel@0 24 % This version saves computation time if HDATA has already been
Daniel@0 25 % evaluated for the current weight and bias values.
Daniel@0 26 %
Daniel@0 27 % See also
Daniel@0 28 % GLM, GLMTRAIN, HESSCHEK, NETHESS
Daniel@0 29 %
Daniel@0 30
Daniel@0 31 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 32
Daniel@0 33 % Check arguments for consistency
Daniel@0 34 errstring = consist(net, 'glm', x, t);
Daniel@0 35 if ~isempty(errstring);
Daniel@0 36 error(errstring);
Daniel@0 37 end
Daniel@0 38
Daniel@0 39 ndata = size(x, 1);
Daniel@0 40 nparams = net.nwts;
Daniel@0 41 nout = net.nout;
Daniel@0 42 p = glmfwd(net, x);
Daniel@0 43 inputs = [x ones(ndata, 1)];
Daniel@0 44
Daniel@0 45 if nargin == 3
Daniel@0 46 hdata = zeros(nparams); % Full Hessian matrix
Daniel@0 47 % Calculate data component of Hessian
Daniel@0 48 switch net.outfn
Daniel@0 49
Daniel@0 50 case 'linear'
Daniel@0 51 % No weighting function here
Daniel@0 52 out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)];
Daniel@0 53 for j = 1:nout
Daniel@0 54 hdata = rearrange_hess(net, j, out_hess, hdata);
Daniel@0 55 end
Daniel@0 56 case 'logistic'
Daniel@0 57 % Each output is independent
Daniel@0 58 e = ones(1, net.nin+1);
Daniel@0 59 link_deriv = p.*(1-p);
Daniel@0 60 out_hess = zeros(net.nin+1);
Daniel@0 61 for j = 1:nout
Daniel@0 62 inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e);
Daniel@0 63 out_hess = inputs'*inputs; % Hessian for this output
Daniel@0 64 hdata = rearrange_hess(net, j, out_hess, hdata);
Daniel@0 65 end
Daniel@0 66
Daniel@0 67 case 'softmax'
Daniel@0 68 bb_start = nparams - nout + 1; % Start of bias weights block
Daniel@0 69 ex_hess = zeros(nparams); % Contribution to Hessian from single example
Daniel@0 70 for m = 1:ndata
Daniel@0 71 X = x(m,:)'*x(m,:);
Daniel@0 72 a = diag(p(m,:))-((p(m,:)')*p(m,:));
Daniel@0 73 ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X);
Daniel@0 74 ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout);
Daniel@0 75 temp = kron(a, x(m,:));
Daniel@0 76 ex_hess(bb_start:nparams, 1:nparams-nout) = temp;
Daniel@0 77 ex_hess(1:nparams-nout, bb_start:nparams) = temp';
Daniel@0 78 hdata = hdata + ex_hess;
Daniel@0 79 end
Daniel@0 80 otherwise
Daniel@0 81 error(['Unknown activation function ', net.outfn]);
Daniel@0 82 end
Daniel@0 83 end
Daniel@0 84
Daniel@0 85 [h, hdata] = hbayes(net, hdata);
Daniel@0 86
Daniel@0 87 function hdata = rearrange_hess(net, j, out_hess, hdata)
Daniel@0 88
Daniel@0 89 % Because all the biases come after all the input weights,
Daniel@0 90 % we have to rearrange the blocks that make up the network Hessian.
Daniel@0 91 % This function assumes that we are on the jth output and that all outputs
Daniel@0 92 % are independent.
Daniel@0 93
Daniel@0 94 bb_start = net.nwts - net.nout + 1; % Start of bias weights block
Daniel@0 95 ob_start = 1+(j-1)*net.nin; % Start of weight block for jth output
Daniel@0 96 ob_end = j*net.nin; % End of weight block for jth output
Daniel@0 97 b_index = bb_start+(j-1); % Index of bias weight
Daniel@0 98 % Put input weight block in right place
Daniel@0 99 hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin);
Daniel@0 100 % Put second derivative of bias weight in right place
Daniel@0 101 hdata(b_index, b_index) = out_hess(net.nin+1, net.nin+1);
Daniel@0 102 % Put cross terms (input weight v bias weight) in right place
Daniel@0 103 hdata(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin);
Daniel@0 104 hdata(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1);
Daniel@0 105
Daniel@0 106 return