annotate toolboxes/FullBNT-1.0.7/netlab3.3/gbayes.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [g, gdata, gprior] = gbayes(net, gdata)
Daniel@0 2 %GBAYES Evaluate gradient of Bayesian error function for network.
Daniel@0 3 %
Daniel@0 4 % Description
Daniel@0 5 % G = GBAYES(NET, GDATA) takes a network data structure NET together
Daniel@0 6 % the data contribution to the error gradient for a set of inputs and
Daniel@0 7 % targets. It returns the regularised error gradient using any zero
Daniel@0 8 % mean Gaussian priors on the weights defined in NET. In addition, if
Daniel@0 9 % a MASK is defined in NET, then the entries in G that correspond to
Daniel@0 10 % weights with a 0 in the mask are removed.
Daniel@0 11 %
Daniel@0 12 % [G, GDATA, GPRIOR] = GBAYES(NET, GDATA) additionally returns the data
Daniel@0 13 % and prior components of the error.
Daniel@0 14 %
Daniel@0 15 % See also
Daniel@0 16 % ERRBAYES, GLMGRAD, MLPGRAD, RBFGRAD
Daniel@0 17 %
Daniel@0 18
Daniel@0 19 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 20
Daniel@0 21 % Evaluate the data contribution to the gradient.
Daniel@0 22 if (isfield(net, 'mask'))
Daniel@0 23 gdata = gdata(logical(net.mask));
Daniel@0 24 end
Daniel@0 25 if isfield(net, 'beta')
Daniel@0 26 g1 = gdata*net.beta;
Daniel@0 27 else
Daniel@0 28 g1 = gdata;
Daniel@0 29 end
Daniel@0 30
Daniel@0 31 % Evaluate the prior contribution to the gradient.
Daniel@0 32 if isfield(net, 'alpha')
Daniel@0 33 w = netpak(net);
Daniel@0 34 if size(net.alpha) == [1 1]
Daniel@0 35 gprior = w;
Daniel@0 36 g2 = net.alpha*gprior;
Daniel@0 37 else
Daniel@0 38 if (isfield(net, 'mask'))
Daniel@0 39 nindx_cols = size(net.index, 2);
Daniel@0 40 nmask_rows = size(find(net.mask), 1);
Daniel@0 41 index = reshape(net.index(logical(repmat(net.mask, ...
Daniel@0 42 1, nindx_cols))), nmask_rows, nindx_cols);
Daniel@0 43 else
Daniel@0 44 index = net.index;
Daniel@0 45 end
Daniel@0 46
Daniel@0 47 ngroups = size(net.alpha, 1);
Daniel@0 48 gprior = index'.*(ones(ngroups, 1)*w);
Daniel@0 49 g2 = net.alpha'*gprior;
Daniel@0 50 end
Daniel@0 51 else
Daniel@0 52 gprior = 0;
Daniel@0 53 g2 = 0;
Daniel@0 54 end
Daniel@0 55
Daniel@0 56 g = g1 + g2;