annotate toolboxes/FullBNT-1.0.7/netlab3.3/errbayes.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [e, edata, eprior] = errbayes(net, edata)
Daniel@0 2 %ERRBAYES Evaluate Bayesian error function for network.
Daniel@0 3 %
Daniel@0 4 % Description
Daniel@0 5 % E = ERRBAYES(NET, EDATA) takes a network data structure NET together
Daniel@0 6 % the data contribution to the error for a set of inputs and targets.
Daniel@0 7 % It returns the regularised error using any zero mean Gaussian priors
Daniel@0 8 % on the weights defined in NET.
Daniel@0 9 %
Daniel@0 10 % [E, EDATA, EPRIOR] = ERRBAYES(NET, X, T) additionally returns the
Daniel@0 11 % data and prior components of the error.
Daniel@0 12 %
Daniel@0 13 % See also
Daniel@0 14 % GLMERR, MLPERR, RBFERR
Daniel@0 15 %
Daniel@0 16
Daniel@0 17 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 18
Daniel@0 19 % Evaluate the data contribution to the error.
Daniel@0 20 if isfield(net, 'beta')
Daniel@0 21 e1 = net.beta*edata;
Daniel@0 22 else
Daniel@0 23 e1 = edata;
Daniel@0 24 end
Daniel@0 25
Daniel@0 26 % Evaluate the prior contribution to the error.
Daniel@0 27 if isfield(net, 'alpha')
Daniel@0 28 w = netpak(net);
Daniel@0 29 if size(net.alpha) == [1 1]
Daniel@0 30 eprior = 0.5*(w*w');
Daniel@0 31 e2 = eprior*net.alpha;
Daniel@0 32 else
Daniel@0 33 if (isfield(net, 'mask'))
Daniel@0 34 nindx_cols = size(net.index, 2);
Daniel@0 35 nmask_rows = size(find(net.mask), 1);
Daniel@0 36 index = reshape(net.index(logical(repmat(net.mask, ...
Daniel@0 37 1, nindx_cols))), nmask_rows, nindx_cols);
Daniel@0 38 else
Daniel@0 39 index = net.index;
Daniel@0 40 end
Daniel@0 41 eprior = 0.5*(w.^2)*index;
Daniel@0 42 e2 = eprior*net.alpha;
Daniel@0 43 end
Daniel@0 44 else
Daniel@0 45 eprior = 0;
Daniel@0 46 e2 = 0;
Daniel@0 47 end
Daniel@0 48
Daniel@0 49 e = e1 + e2;