annotate toolboxes/FullBNT-1.0.7/netlab3.3/demgpot.m @ 0:cc4b1211e677
tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
author |
Daniel Wolff |
date |
Fri, 19 Aug 2016 13:07:06 +0200 |
parents |
|
children |
|
rev |
line source |
Daniel@0
|
1 function g = demgpot(x, mix)
|
Daniel@0
|
2 %DEMGPOT Computes the gradient of the negative log likelihood for a mixture model.
|
Daniel@0
|
3 %
|
Daniel@0
|
4 % Description
|
Daniel@0
|
5 % This function computes the gradient of the negative log of the
|
Daniel@0
|
6 % unconditional data density P(X) with respect to the coefficients of
|
Daniel@0
|
7 % the data vector X for a Gaussian mixture model. The data structure
|
Daniel@0
|
8 % MIX defines the mixture model, while the matrix X contains the data
|
Daniel@0
|
9 % vector as a row vector. Note the unusual order of the arguments: this
|
Daniel@0
|
10 % is so that the function can be used in DEMHMC1 directly for sampling
|
Daniel@0
|
11 % from the distribution P(X).
|
Daniel@0
|
12 %
|
Daniel@0
|
13 % See also
|
Daniel@0
|
14 % DEMHMC1, DEMMET1, DEMPOT
|
Daniel@0
|
15 %
|
Daniel@0
|
16
|
Daniel@0
|
17 % Copyright (c) Ian T Nabney (1996-2001)
|
Daniel@0
|
18
|
Daniel@0
|
19 % Computes the potential gradient
|
Daniel@0
|
20
|
Daniel@0
|
21 temp = (ones(mix.ncentres,1)*x)-mix.centres;
|
Daniel@0
|
22 temp = temp.*(gmmactiv(mix,x)'*ones(1, mix.nin));
|
Daniel@0
|
23 % Assume spherical covariance structure
|
Daniel@0
|
24 if ~strcmp(mix.covar_type, 'spherical')
|
Daniel@0
|
25 error('Spherical covariance only.')
|
Daniel@0
|
26 end
|
Daniel@0
|
27 temp = temp./(mix.covars'*ones(1, mix.nin));
|
Daniel@0
|
28 temp = temp.*(mix.priors'*ones(1, mix.nin));
|
Daniel@0
|
29 g = sum(temp, 1)/gmmprob(mix, x); |