annotate toolboxes/FullBNT-1.0.7/netlab3.3/demgmm3.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 %DEMGMM3 Demonstrate density modelling with a Gaussian mixture model.
Daniel@0 2 %
Daniel@0 3 % Description
Daniel@0 4 % The problem consists of modelling data generated by a mixture of
Daniel@0 5 % three Gaussians in 2 dimensions with a mixture model using diagonal
Daniel@0 6 % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres
Daniel@0 7 % are (2, 3.5), (0, 0) and (0,2); the covariances are all axis aligned
Daniel@0 8 % (0.16, 0.64), (0.25, 1) and the identity matrix. The first figure
Daniel@0 9 % contains a scatter plot of the data.
Daniel@0 10 %
Daniel@0 11 % A Gaussian mixture model with three components is trained using EM.
Daniel@0 12 % The parameter vector is printed before training and after training.
Daniel@0 13 % The user should press any key to continue at these points. The
Daniel@0 14 % parameter vector consists of priors (the column), and centres (given
Daniel@0 15 % as (x, y) pairs as the next two columns). The diagonal entries of
Daniel@0 16 % the covariance matrices are printed separately.
Daniel@0 17 %
Daniel@0 18 % The second figure is a 3 dimensional view of the density function,
Daniel@0 19 % while the third shows the axes of the 1-standard deviation circles
Daniel@0 20 % for the three components of the mixture model.
Daniel@0 21 %
Daniel@0 22 % See also
Daniel@0 23 % GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK
Daniel@0 24 %
Daniel@0 25
Daniel@0 26 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 27
Daniel@0 28 % Generate the data
Daniel@0 29 ndata = 500;
Daniel@0 30
Daniel@0 31 % Fix the seeds for reproducible results
Daniel@0 32 randn('state', 42);
Daniel@0 33 rand('state', 42);
Daniel@0 34 data = randn(ndata, 2);
Daniel@0 35 prior = [0.3 0.5 0.2];
Daniel@0 36 % Mixture model swaps clusters 1 and 3
Daniel@0 37 datap = [0.2 0.5 0.3];
Daniel@0 38 datac = [0 2; 0 0; 2 3.5];
Daniel@0 39 datacov = [1 1;1 0.25; 0.4*0.4 0.8*0.8];
Daniel@0 40 data1 = data(1:prior(1)*ndata,:);
Daniel@0 41 data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :);
Daniel@0 42 data3 = data((prior(1)+prior(2))*ndata +1:ndata, :);
Daniel@0 43
Daniel@0 44 % First cluster has axis aligned variance and centre (2, 3.5)
Daniel@0 45 data1(:, 1) = data1(:, 1)*0.4 + 2.0;
Daniel@0 46 data1(:, 2) = data1(:, 2)*0.8 + 3.5;
Daniel@0 47
Daniel@0 48 % Second cluster has axis aligned variance and centre (0, 0)
Daniel@0 49 data2(:,2) = data2(:, 2)*0.5;
Daniel@0 50
Daniel@0 51 % Third cluster is at (0,2) with identity matrix for covariance
Daniel@0 52 data3 = data3 + repmat([0 2], prior(3)*ndata, 1);
Daniel@0 53
Daniel@0 54 % Put the dataset together again
Daniel@0 55 data = [data1; data2; data3];
Daniel@0 56
Daniel@0 57 clc
Daniel@0 58 disp('This demonstration illustrates the use of a Gaussian mixture model')
Daniel@0 59 disp('with diagonal covariance matrices to approximate the unconditional')
Daniel@0 60 disp('probability density of data in a two-dimensional space.')
Daniel@0 61 disp('We begin by generating the data from a mixture of three Gaussians')
Daniel@0 62 disp('with axis aligned covariance structure and plotting it.')
Daniel@0 63 disp(' ')
Daniel@0 64 disp('The first cluster has centre (0, 2).')
Daniel@0 65 disp('The second cluster has centre (0, 0).')
Daniel@0 66 disp('The third cluster has centre (2, 3.5).')
Daniel@0 67 disp(' ')
Daniel@0 68 disp('Press any key to continue')
Daniel@0 69 pause
Daniel@0 70
Daniel@0 71 fh1 = figure;
Daniel@0 72 plot(data(:, 1), data(:, 2), 'o')
Daniel@0 73 set(gca, 'Box', 'on')
Daniel@0 74
Daniel@0 75 % Set up mixture model
Daniel@0 76 ncentres = 3;
Daniel@0 77 input_dim = 2;
Daniel@0 78 mix = gmm(input_dim, ncentres, 'diag');
Daniel@0 79
Daniel@0 80 options = foptions;
Daniel@0 81 options(14) = 5; % Just use 5 iterations of k-means in initialisation
Daniel@0 82 % Initialise the model parameters from the data
Daniel@0 83 mix = gmminit(mix, data, options);
Daniel@0 84
Daniel@0 85 % Print out model
Daniel@0 86 disp('The mixture model has three components and diagonal covariance')
Daniel@0 87 disp('matrices. The model parameters after initialisation using the')
Daniel@0 88 disp('k-means algorithm are as follows')
Daniel@0 89 disp(' Priors Centres')
Daniel@0 90 disp([mix.priors' mix.centres])
Daniel@0 91 disp('Covariance diagonals are')
Daniel@0 92 disp(mix.covars)
Daniel@0 93 disp('Press any key to continue.')
Daniel@0 94 pause
Daniel@0 95
Daniel@0 96 % Set up vector of options for EM trainer
Daniel@0 97 options = zeros(1, 18);
Daniel@0 98 options(1) = 1; % Prints out error values.
Daniel@0 99 options(14) = 20; % Number of iterations.
Daniel@0 100
Daniel@0 101 disp('We now train the model using the EM algorithm for 20 iterations.')
Daniel@0 102 disp(' ')
Daniel@0 103 disp('Press any key to continue.')
Daniel@0 104 pause
Daniel@0 105
Daniel@0 106 [mix, options, errlog] = gmmem(mix, data, options);
Daniel@0 107
Daniel@0 108 % Print out model
Daniel@0 109 disp(' ')
Daniel@0 110 disp('The trained model has priors and centres:')
Daniel@0 111 disp(' Priors Centres')
Daniel@0 112 disp([mix.priors' mix.centres])
Daniel@0 113 disp('The data generator has priors and centres')
Daniel@0 114 disp(' Priors Centres')
Daniel@0 115 disp([datap' datac])
Daniel@0 116 disp('Model covariance diagonals are')
Daniel@0 117 disp(mix.covars)
Daniel@0 118 disp('Data generator covariance diagonals are')
Daniel@0 119 disp(datacov)
Daniel@0 120 disp('Note the close correspondence between these parameters and those')
Daniel@0 121 disp('of the distribution used to generate the data.')
Daniel@0 122 disp(' ')
Daniel@0 123 disp('Press any key to continue.')
Daniel@0 124 pause
Daniel@0 125
Daniel@0 126 clc
Daniel@0 127 disp('We now plot the density given by the mixture model as a surface plot.')
Daniel@0 128 disp(' ')
Daniel@0 129 disp('Press any key to continue.')
Daniel@0 130 pause
Daniel@0 131
Daniel@0 132 % Plot the result
Daniel@0 133 x = -4.0:0.2:5.0;
Daniel@0 134 y = -4.0:0.2:5.0;
Daniel@0 135 [X, Y] = meshgrid(x,y);
Daniel@0 136 X = X(:);
Daniel@0 137 Y = Y(:);
Daniel@0 138 grid = [X Y];
Daniel@0 139 Z = gmmprob(mix, grid);
Daniel@0 140 Z = reshape(Z, length(x), length(y));
Daniel@0 141 c = mesh(x, y, Z);
Daniel@0 142 hold on
Daniel@0 143 title('Surface plot of probability density')
Daniel@0 144 hold off
Daniel@0 145 drawnow
Daniel@0 146
Daniel@0 147 clc
Daniel@0 148 disp('The final plot shows the centres and widths, given by one standard')
Daniel@0 149 disp('deviation, of the three components of the mixture model. The axes')
Daniel@0 150 disp('of the ellipses of constant density are shown.')
Daniel@0 151 disp(' ')
Daniel@0 152 disp('Press any key to continue.')
Daniel@0 153 pause
Daniel@0 154
Daniel@0 155 % Try to calculate a sensible position for the second figure, below the first
Daniel@0 156 fig1_pos = get(fh1, 'Position');
Daniel@0 157 fig2_pos = fig1_pos;
Daniel@0 158 fig2_pos(2) = fig2_pos(2) - fig1_pos(4);
Daniel@0 159 fh2 = figure('Position', fig2_pos);
Daniel@0 160
Daniel@0 161 h = plot(data(:, 1), data(:, 2), 'bo');
Daniel@0 162 hold on
Daniel@0 163 axis('equal');
Daniel@0 164 title('Plot of data and covariances')
Daniel@0 165 for i = 1:ncentres
Daniel@0 166 v = [1 0];
Daniel@0 167 for j = 1:2
Daniel@0 168 start=mix.centres(i,:)-sqrt(mix.covars(i,:).*v);
Daniel@0 169 endpt=mix.centres(i,:)+sqrt(mix.covars(i,:).*v);
Daniel@0 170 linex = [start(1) endpt(1)];
Daniel@0 171 liney = [start(2) endpt(2)];
Daniel@0 172 line(linex, liney, 'Color', 'k', 'LineWidth', 3)
Daniel@0 173 v = [0 1];
Daniel@0 174 end
Daniel@0 175 % Plot ellipses of one standard deviation
Daniel@0 176 theta = 0:0.02:2*pi;
Daniel@0 177 x = sqrt(mix.covars(i,1))*cos(theta) + mix.centres(i,1);
Daniel@0 178 y = sqrt(mix.covars(i,2))*sin(theta) + mix.centres(i,2);
Daniel@0 179 plot(x, y, 'r-');
Daniel@0 180 end
Daniel@0 181 hold off
Daniel@0 182
Daniel@0 183 disp('Note how the data cluster positions and widths are captured by')
Daniel@0 184 disp('the mixture model.')
Daniel@0 185 disp(' ')
Daniel@0 186 disp('Press any key to end.')
Daniel@0 187 pause
Daniel@0 188
Daniel@0 189 close(fh1);
Daniel@0 190 close(fh2);
Daniel@0 191 clear all;
Daniel@0 192