annotate toolboxes/FullBNT-1.0.7/nethelp3.3/rbftrain.htm @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 <html>
Daniel@0 2 <head>
Daniel@0 3 <title>
Daniel@0 4 Netlab Reference Manual rbftrain
Daniel@0 5 </title>
Daniel@0 6 </head>
Daniel@0 7 <body>
Daniel@0 8 <H1> rbftrain
Daniel@0 9 </H1>
Daniel@0 10 <h2>
Daniel@0 11 Purpose
Daniel@0 12 </h2>
Daniel@0 13 Two stage training of RBF network.
Daniel@0 14
Daniel@0 15 <p><h2>
Daniel@0 16 Description
Daniel@0 17 </h2>
Daniel@0 18 <CODE>net = rbftrain(net, options, x, t)</CODE> uses a
Daniel@0 19 two stage training
Daniel@0 20 algorithm to set the weights in the RBF model structure <CODE>net</CODE>.
Daniel@0 21 Each row of <CODE>x</CODE> corresponds to one
Daniel@0 22 input vector and each row of <CODE>t</CODE> contains the corresponding target vector.
Daniel@0 23 The centres are determined by fitting a Gaussian mixture model
Daniel@0 24 with circular covariances using the EM algorithm through a call to
Daniel@0 25 <CODE>rbfsetbf</CODE>. (The mixture model is
Daniel@0 26 initialised using a small number of iterations of the K-means algorithm.)
Daniel@0 27 If the activation functions are Gaussians, then the basis function widths
Daniel@0 28 are then set to the maximum inter-centre squared distance.
Daniel@0 29
Daniel@0 30 <p>For linear outputs,
Daniel@0 31 the hidden to output
Daniel@0 32 weights that give rise to the least squares solution
Daniel@0 33 can then be determined using the pseudo-inverse. For neuroscale outputs,
Daniel@0 34 the hidden to output weights are determined using the iterative shadow
Daniel@0 35 targets algorithm.
Daniel@0 36 Although this two stage
Daniel@0 37 procedure may not give solutions with as low an error as using general
Daniel@0 38 purpose non-linear optimisers, it is much faster.
Daniel@0 39
Daniel@0 40 <p>The options vector may have two rows: if this is the case, then the second row
Daniel@0 41 is passed to <CODE>rbfsetbf</CODE>, which allows the user to specify a different
Daniel@0 42 number iterations for RBF and GMM training.
Daniel@0 43 The optional parameters to <CODE>rbftrain</CODE> have the following interpretations.
Daniel@0 44
Daniel@0 45 <p><CODE>options(1)</CODE> is set to 1 to display error values during EM training.
Daniel@0 46
Daniel@0 47 <p><CODE>options(2)</CODE> is a measure of the precision required for the value
Daniel@0 48 of the weights <CODE>w</CODE> at the solution.
Daniel@0 49
Daniel@0 50 <p><CODE>options(3)</CODE> is a measure of the precision required of the objective
Daniel@0 51 function at the solution. Both this and the previous condition must be
Daniel@0 52 satisfied for termination.
Daniel@0 53
Daniel@0 54 <p><CODE>options(5)</CODE> is set to 1 if the basis functions parameters should remain
Daniel@0 55 unchanged; default 0.
Daniel@0 56
Daniel@0 57 <p><CODE>options(6)</CODE> is set to 1 if the output layer weights should be should
Daniel@0 58 set using PCA. This is only relevant for Neuroscale outputs; default 0.
Daniel@0 59
Daniel@0 60 <p><CODE>options(14)</CODE> is the maximum number of iterations for the shadow
Daniel@0 61 targets algorithm;
Daniel@0 62 default 100.
Daniel@0 63
Daniel@0 64 <p><h2>
Daniel@0 65 Example
Daniel@0 66 </h2>
Daniel@0 67 The following example creates an RBF network and then trains it:
Daniel@0 68 <PRE>
Daniel@0 69
Daniel@0 70 net = rbf(1, 4, 1, 'gaussian');
Daniel@0 71 options(1, :) = foptions;
Daniel@0 72 options(2, :) = foptions;
Daniel@0 73 options(2, 14) = 10; % 10 iterations of EM
Daniel@0 74 options(2, 5) = 1; % Check for covariance collapse in EM
Daniel@0 75 net = rbftrain(net, options, x, t);
Daniel@0 76 </PRE>
Daniel@0 77
Daniel@0 78
Daniel@0 79 <p><h2>
Daniel@0 80 See Also
Daniel@0 81 </h2>
Daniel@0 82 <CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="rbferr.htm">rbferr</a></CODE>, <CODE><a href="rbffwd.htm">rbffwd</a></CODE>, <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE>, <CODE><a href="rbfpak.htm">rbfpak</a></CODE>, <CODE><a href="rbfunpak.htm">rbfunpak</a></CODE>, <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><hr>
Daniel@0 83 <b>Pages:</b>
Daniel@0 84 <a href="index.htm">Index</a>
Daniel@0 85 <hr>
Daniel@0 86 <p>Copyright (c) Ian T Nabney (1996-9)
Daniel@0 87
Daniel@0 88
Daniel@0 89 </body>
Daniel@0 90 </html>