annotate toolboxes/FullBNT-1.0.7/nethelp3.3/mlpprior.htm @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 <html>
Daniel@0 2 <head>
Daniel@0 3 <title>
Daniel@0 4 Netlab Reference Manual mlpprior
Daniel@0 5 </title>
Daniel@0 6 </head>
Daniel@0 7 <body>
Daniel@0 8 <H1> mlpprior
Daniel@0 9 </H1>
Daniel@0 10 <h2>
Daniel@0 11 Purpose
Daniel@0 12 </h2>
Daniel@0 13 Create Gaussian prior for mlp.
Daniel@0 14
Daniel@0 15 <p><h2>
Daniel@0 16 Synopsis
Daniel@0 17 </h2>
Daniel@0 18 <PRE>
Daniel@0 19 prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2)</PRE>
Daniel@0 20
Daniel@0 21
Daniel@0 22 <p><h2>
Daniel@0 23 Description
Daniel@0 24 </h2>
Daniel@0 25 <CODE>prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2)</CODE>
Daniel@0 26 generates a data structure
Daniel@0 27 <CODE>prior</CODE>, with fields <CODE>prior.alpha</CODE> and <CODE>prior.index</CODE>, which
Daniel@0 28 specifies a Gaussian prior distribution for the network weights in a
Daniel@0 29 two-layer feedforward network. Two different cases are possible. In
Daniel@0 30 the first case, <CODE>aw1</CODE>, <CODE>ab1</CODE>, <CODE>aw2</CODE> and <CODE>ab2</CODE> are all
Daniel@0 31 scalars and represent the regularization coefficients for four groups
Daniel@0 32 of parameters in the network corresponding to first-layer weights,
Daniel@0 33 first-layer biases, second-layer weights, and second-layer biases
Daniel@0 34 respectively. Then <CODE>prior.alpha</CODE> represents a column vector of
Daniel@0 35 length 4 containing the parameters, and <CODE>prior.index</CODE> is a matrix
Daniel@0 36 specifying which weights belong in each group. Each column has one
Daniel@0 37 element for each weight in the matrix, using the standard ordering as
Daniel@0 38 defined in <CODE>mlppak</CODE>, and each element is 1 or 0 according to
Daniel@0 39 whether the weight is a member of the corresponding group or not. In
Daniel@0 40 the second case the parameter <CODE>aw1</CODE> is a vector of length equal to
Daniel@0 41 the number of inputs in the network, and the corresponding matrix
Daniel@0 42 <CODE>prior.index</CODE> now partitions the first-layer weights into groups
Daniel@0 43 corresponding to the weights fanning out of each input unit. This
Daniel@0 44 prior is appropriate for the technique of automatic relevance
Daniel@0 45 determination.
Daniel@0 46
Daniel@0 47 <p><h2>
Daniel@0 48 See Also
Daniel@0 49 </h2>
Daniel@0 50 <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE><hr>
Daniel@0 51 <b>Pages:</b>
Daniel@0 52 <a href="index.htm">Index</a>
Daniel@0 53 <hr>
Daniel@0 54 <p>Copyright (c) Ian T Nabney (1996-9)
Daniel@0 55
Daniel@0 56
Daniel@0 57 </body>
Daniel@0 58 </html>