annotate toolboxes/FullBNT-1.0.7/nethelp3.3/mdnfwd.htm @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 <html>
Daniel@0 2 <head>
Daniel@0 3 <title>
Daniel@0 4 Netlab Reference Manual mdnfwd
Daniel@0 5 </title>
Daniel@0 6 </head>
Daniel@0 7 <body>
Daniel@0 8 <H1> mdnfwd
Daniel@0 9 </H1>
Daniel@0 10 <h2>
Daniel@0 11 Purpose
Daniel@0 12 </h2>
Daniel@0 13 Forward propagation through Mixture Density Network.
Daniel@0 14
Daniel@0 15 <p><h2>
Daniel@0 16 Synopsis
Daniel@0 17 </h2>
Daniel@0 18 <PRE>
Daniel@0 19 mixparams = mdnfwd(net, x)
Daniel@0 20 [mixparams, y, z] = mdnfwd(net, x)
Daniel@0 21 [mixparams, y, z, a] = mdnfwd(net, x)
Daniel@0 22 </PRE>
Daniel@0 23
Daniel@0 24
Daniel@0 25 <p><h2>
Daniel@0 26 Description
Daniel@0 27 </h2>
Daniel@0 28
Daniel@0 29 <CODE>mixparams = mdnfwd(net, x)</CODE> takes a mixture density network data
Daniel@0 30 structure <CODE>net</CODE> and a matrix <CODE>x</CODE> of input vectors, and forward
Daniel@0 31 propagates the inputs through the network to generate a structure
Daniel@0 32 <CODE>mixparams</CODE> which contains the parameters of several mixture models.
Daniel@0 33 Each row of <CODE>x</CODE> represents
Daniel@0 34 one input vector and the corresponding row of the matrices in <CODE>mixparams</CODE>
Daniel@0 35 represents the parameters of a mixture model for the conditional probability
Daniel@0 36 of target vectors given the input vector. This is not represented as an array
Daniel@0 37 of <CODE>gmm</CODE> structures to improve the efficiency of MDN training.
Daniel@0 38
Daniel@0 39 <p>The fields in <CODE>mixparams</CODE> are
Daniel@0 40 <PRE>
Daniel@0 41
Daniel@0 42 type = 'mdnmixes'
Daniel@0 43 ncentres = number of mixture components
Daniel@0 44 dimtarget = dimension of target space
Daniel@0 45 mixcoeffs = mixing coefficients
Daniel@0 46 centres = means of Gaussians: stored as one row per pattern
Daniel@0 47 covars = covariances of Gaussians
Daniel@0 48 nparams = number of parameters
Daniel@0 49 </PRE>
Daniel@0 50
Daniel@0 51
Daniel@0 52 <p><CODE>[mixparams, y, z] = mdnfwd(net, x)</CODE> also generates a matrix <CODE>y</CODE> of
Daniel@0 53 the outputs of the MLP and a matrix <CODE>z</CODE> of the hidden
Daniel@0 54 unit activations where each row corresponds to one pattern.
Daniel@0 55
Daniel@0 56 <p><CODE>[mixparams, y, z, a] = mlpfwd(net, x)</CODE> also returns a matrix <CODE>a</CODE>
Daniel@0 57 giving the summed inputs to each output unit, where each row
Daniel@0 58 corresponds to one pattern.
Daniel@0 59
Daniel@0 60 <p><h2>
Daniel@0 61 See Also
Daniel@0 62 </h2>
Daniel@0 63 <CODE><a href="mdn.htm">mdn</a></CODE>, <CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE>, <CODE><a href="mdnerr.htm">mdnerr</a></CODE>, <CODE><a href="mdngrad.htm">mdngrad</a></CODE>, <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE><hr>
Daniel@0 64 <b>Pages:</b>
Daniel@0 65 <a href="index.htm">Index</a>
Daniel@0 66 <hr>
Daniel@0 67 <p>Copyright (c) Ian T Nabney (1996-9)
Daniel@0 68 <p>David J Evans (1998)
Daniel@0 69
Daniel@0 70 </body>
Daniel@0 71 </html>