annotate toolboxes/FullBNT-1.0.7/nethelp3.3/linemin.htm @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 <html>
Daniel@0 2 <head>
Daniel@0 3 <title>
Daniel@0 4 Netlab Reference Manual linemin
Daniel@0 5 </title>
Daniel@0 6 </head>
Daniel@0 7 <body>
Daniel@0 8 <H1> linemin
Daniel@0 9 </H1>
Daniel@0 10 <h2>
Daniel@0 11 Purpose
Daniel@0 12 </h2>
Daniel@0 13 One dimensional minimization.
Daniel@0 14
Daniel@0 15 <p><h2>
Daniel@0 16 Description
Daniel@0 17 </h2>
Daniel@0 18 <CODE>[x, options] = linemin(f, pt, dir, fpt, options)</CODE> uses Brent's
Daniel@0 19 algorithm to find the minimum of the function <CODE>f(x)</CODE> along the
Daniel@0 20 line <CODE>dir</CODE> through the point <CODE>pt</CODE>. The function value at the
Daniel@0 21 starting point is <CODE>fpt</CODE>. The point at which <CODE>f</CODE> has a local minimum
Daniel@0 22 is returned as <CODE>x</CODE>. The function value at that point is returned
Daniel@0 23 in <CODE>options(8)</CODE>.
Daniel@0 24
Daniel@0 25 <p><CODE>linemin(f, pt, dir, fpt, options, p1, p2, ...)</CODE> allows
Daniel@0 26 additional arguments to be passed to <CODE>f()</CODE>.
Daniel@0 27
Daniel@0 28 <p>The optional parameters have the following interpretations.
Daniel@0 29
Daniel@0 30 <p><CODE>options(1)</CODE> is set to 1 to display error values.
Daniel@0 31
Daniel@0 32 <p><CODE>options(2)</CODE> is a measure of the absolute precision required for the value
Daniel@0 33 of <CODE>x</CODE> at the solution.
Daniel@0 34
Daniel@0 35 <p><CODE>options(3)</CODE> is a measure of the precision required of the objective
Daniel@0 36 function at the solution. Both this and the previous condition must be
Daniel@0 37 satisfied for termination.
Daniel@0 38
Daniel@0 39 <p><CODE>options(14)</CODE> is the maximum number of iterations; default 100.
Daniel@0 40
Daniel@0 41 <p><h2>
Daniel@0 42 Examples
Daniel@0 43 </h2>
Daniel@0 44 An example of the use of this function to find the minimum of a function
Daniel@0 45 <CODE>f</CODE> in the direction <CODE>sd</CODE> can be found in <CODE>conjgrad</CODE>
Daniel@0 46 <PRE>
Daniel@0 47
Daniel@0 48 x = linemin(f, xold, sd, fold, lineoptions);
Daniel@0 49 </PRE>
Daniel@0 50
Daniel@0 51
Daniel@0 52 <p><h2>
Daniel@0 53 Algorithm
Daniel@0 54 </h2>
Daniel@0 55
Daniel@0 56 Brent's algorithm uses a mixture of quadratic interpolation and golden
Daniel@0 57 section search to find the minimum of a function of a single variable once
Daniel@0 58 it has been bracketed (which is done with <CODE>minbrack</CODE>). This is adapted
Daniel@0 59 to minimize a function along a line.
Daniel@0 60 This implementation
Daniel@0 61 is based on that in Numerical Recipes.
Daniel@0 62
Daniel@0 63 <p><h2>
Daniel@0 64 See Also
Daniel@0 65 </h2>
Daniel@0 66 <CODE><a href="conjgrad.htm">conjgrad</a></CODE>, <CODE><a href="minbrack.htm">minbrack</a></CODE>, <CODE><a href="quasinew.htm">quasinew</a></CODE><hr>
Daniel@0 67 <b>Pages:</b>
Daniel@0 68 <a href="index.htm">Index</a>
Daniel@0 69 <hr>
Daniel@0 70 <p>Copyright (c) Ian T Nabney (1996-9)
Daniel@0 71
Daniel@0 72
Daniel@0 73 </body>
Daniel@0 74 </html>