annotate toolboxes/FullBNT-1.0.7/graph/mk_nbrs_of_digraph.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [Gs, op, nodes, A] = my_mk_nbs_of_digraph(G0,A)
Daniel@0 2 % MY_MK_NBRS_OF_DIGRAPH Make all digraphs that differ from G0 by a single edge deletion, addition or reversal, subject to acyclicity
Daniel@0 3 % [Gs, op, nodes, A] = my_mk_nbrs_of_digraph(G0,<A>)
Daniel@0 4 %
Daniel@0 5 % G0 is an adj matrix s.t. G0(i,j)=1 iff i->j in graph
Daniel@0 6 % A is the ancestor matrix for G0 (opt, creates if necessary)
Daniel@0 7 %
Daniel@0 8 % Gs(:,:,i) is the i'th neighbor
Daniel@0 9 % op{i} = 'add', 'del', or 'rev' is the operation used to create the i'th neighbor.
Daniel@0 10 % nodes(i,1:2) are the head and tail of the operated-on arc.
Daniel@0 11 % Modified from mk_nbrs_of_digraph by Sonia Leach
Daniel@0 12 %
Daniel@0 13 % Modified by Sonia Leach Feb 02
Daniel@0 14
Daniel@0 15 if nargin ==1, A = reachability_graph(G0');, end
Daniel@0 16
Daniel@0 17 n = length(G0);
Daniel@0 18 [I,J] = find(G0); % I(k), J(k) is the k'th edge
Daniel@0 19 E = length(I); % num edges present in G0
Daniel@0 20
Daniel@0 21
Daniel@0 22 % SINGLE EDGE DELETIONS
Daniel@0 23 % all deletions are valid wrt acyclity
Daniel@0 24
Daniel@0 25 Grep = repmat(G0(:), 1, E); % each column is a copy of G0
Daniel@0 26 % edge_ndx(k) is the scalar location of the k'th edge
Daniel@0 27 edge_ndx = find(G0);
Daniel@0 28
Daniel@0 29 % edge_ndx = subv2ind([n n], [I J]); % equivalent
Daniel@0 30 % We set (ndx(k), k) to 0 for k=1:E in Grep
Daniel@0 31 ndx = subv2ind(size(Grep), [edge_ndx(:) (1:E)']);
Daniel@0 32 G1 = Grep;
Daniel@0 33 G1(ndx) = 0;
Daniel@0 34 Gdel = reshape(G1, [n n E]);
Daniel@0 35
Daniel@0 36
Daniel@0 37 % SINGLE EDGE REVERSALS
Daniel@0 38
Daniel@0 39 % SML: previously Kevin had that legal structure was if
Daniel@0 40 % A(P,i)=1 for any P = { p | p in parents(j), p~=i}
Daniel@0 41 % specifically he said
Daniel@0 42 % "if any(A(ps,i)) then there is a path i -> parent of j -> j
Daniel@0 43 % so reversing i->j would create a cycle"
Daniel@0 44 % Thus put in another way:
Daniel@0 45 % for each i,j if sum(G0(:,j)' * A(:,i)) > 0, reversing i->j
Daniel@0 46 % is not legal.
Daniel@0 47 %
Daniel@0 48 % Ex. Suppose we want to check if 2->4 can be reversed in the
Daniel@0 49 % following graph:
Daniel@0 50 % G0 = A =
Daniel@0 51 % 0 0 1 0 0 0 0 0
Daniel@0 52 % 0 0 1 1 0 0 0 0
Daniel@0 53 % 0 0 0 1 1 1 0 0
Daniel@0 54 % 0 0 0 0 1 1 1 0
Daniel@0 55 %
Daniel@0 56 % Then parents(4) = G0(:,4) = [0 1 1 0]'
Daniel@0 57 % and A(:,2) = [0 0 1 1]. Thus G0(:,4)'*A(:,2) = 1 b/c 3 is
Daniel@0 58 % an ancestor of 4 and a child of 2. Note that this works b/c
Daniel@0 59 % matrix multiplication has the effect of ANDing the two vectors
Daniel@0 60 % and summing up the result (equiv. to the any(A(ps,i)) in kevin's code)
Daniel@0 61 %
Daniel@0 62 % So, we vectorize and check for all i,j pairs by looking for
Daniel@0 63 % 1's in L = (G0'*A)' which has L(i,j)=1 if rev(i,j) not legal
Daniel@0 64 % Note that this will give 1's where there are none in the G0
Daniel@0 65 % so we do a L=max(0, G0-L) to cancel out only the existing edges that
Daniel@0 66 % aren't legal (subtracting where both are 1 and setting where
Daniel@0 67 % G0=0 and A=1 back to 0).
Daniel@0 68
Daniel@0 69 L = max(0, G0-(G0'*A)');
Daniel@0 70 [IL, JL] = find(L); % I(k), J(k) is the k'th legal edge to rev.
Daniel@0 71 EL = length(IL);
Daniel@0 72
Daniel@0 73
Daniel@0 74 % SML: First we have to DELETE THE EDGES WE ARE REVERSING
Daniel@0 75 % We can't use G1 w/ reversed edges already deleted (as
Daniel@0 76 % Kevin did) b/c the space of possible deletions are different
Daniel@0 77 % now (some reverses aren't legal)
Daniel@0 78
Daniel@0 79 Grep = repmat(G0(:), 1, EL); % each column is a copy of G0
Daniel@0 80 % edge_ndx(k) is the scalar location of the k'th edge
Daniel@0 81 edge_ndx = subv2ind([n n], [IL JL]);
Daniel@0 82 % We set (ndx(k), k) to 0 for k=1:E in Grep
Daniel@0 83 ndx = subv2ind(size(Grep), [edge_ndx(:) (1:EL)']);
Daniel@0 84 G1 = Grep;
Daniel@0 85 G1(ndx) = 0;
Daniel@0 86
Daniel@0 87 % SML: Now we add in our REVERSED EDGES
Daniel@0 88 % rev_edge_ndx(k) is the scalar location of the k'th legal reversed edge
Daniel@0 89 rev_edge_ndx = subv2ind([n n], [JL IL]);
Daniel@0 90
Daniel@0 91 % We set (rev_edge_ndx(k), k) to 1 for k=1:EL in G1
Daniel@0 92 % We have already deleted i->j in the previous step
Daniel@0 93 ndx = subv2ind(size(Grep), [rev_edge_ndx(:) (1:EL)']);
Daniel@0 94 G1(ndx) = 1;
Daniel@0 95 Grev = reshape(G1, [n n EL]);
Daniel@0 96
Daniel@0 97 % SINGLE EDGE ADDITIONS
Daniel@0 98
Daniel@0 99 % SML: previously Kevin had that any addition was legal if A(i,j)=0
Daniel@0 100 % however, you can not add i->j if j is a descendent of i.
Daniel@0 101 % Thus, we create all possible additions in Gbar and then
Daniel@0 102 % subtract the descendants of each edge as possible parents
Daniel@0 103 % This means the potential parents of i (i.e. Gbar(:,i))
Daniel@0 104 % can not also be descendants if i i.e. (A(:,i)) which is accomplished
Daniel@0 105 % by subtracting (Gbar-A == 1 iff Gbar=1 & A=0)
Daniel@0 106
Daniel@0 107 Gbar = ~G0; % Gbar(i,j)=1 iff there is no i->j edge in G0
Daniel@0 108 Gbar = setdiag(Gbar, 0); % turn off self loops
Daniel@0 109
Daniel@0 110 GbarL = Gbar-A;
Daniel@0 111 [IbarL, JbarL] = find(GbarL); % I(k), J(k) is the k'th legal edge to add
Daniel@0 112 EbarL = length(IbarL);
Daniel@0 113
Daniel@0 114 bar_edge_ndx = find(GbarL);
Daniel@0 115
Daniel@0 116 Grep = repmat(G0(:), 1, EbarL); % each column is a copy of G0
Daniel@0 117 ndx = subv2ind(size(Grep), [bar_edge_ndx(:) (1:EbarL)']);
Daniel@0 118 Grep(ndx) = 1;
Daniel@0 119 Gadd = reshape(Grep, [n n EbarL]);
Daniel@0 120
Daniel@0 121
Daniel@0 122 Gs = cat(3, Gdel, Grev, Gadd);
Daniel@0 123
Daniel@0 124 nodes = [I J;
Daniel@0 125 IL JL;
Daniel@0 126 IbarL JbarL];
Daniel@0 127
Daniel@0 128 op = cell(1, E+EL+EbarL);
Daniel@0 129 op(1:E) = {'del'};
Daniel@0 130 op(E+(1:EL)) = {'rev'};
Daniel@0 131 op((E+EL+1):end) = {'add'};
Daniel@0 132