annotate toolboxes/FullBNT-1.0.7/bnt/learning/score_dags_old.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function score = score_dags(data, ns, dags, varargin)
Daniel@0 2 % SCORE_DAGS Compute the score of one or more DAGs
Daniel@0 3 % score = score_dags(data, ns, dags, varargin)
Daniel@0 4 %
Daniel@0 5 % data{i,m} = value of node i in case m (can be a cell array).
Daniel@0 6 % node_sizes(i) is the number of size of node i.
Daniel@0 7 % dags{g} is the g'th dag
Daniel@0 8 % score(g) is the score of the i'th dag
Daniel@0 9 %
Daniel@0 10 % The following optional arguments can be specified in the form of name/value pairs:
Daniel@0 11 % [default value in brackets]
Daniel@0 12 %
Daniel@0 13 % scoring_fn - 'bayesian' or 'bic' [ 'bayesian' ]
Daniel@0 14 % Currently, only networks with all tabular nodes support Bayesian scoring.
Daniel@0 15 % type - type{i} is the type of CPD to use for node i, where the type is a string
Daniel@0 16 % of the form 'tabular', 'noisy_or', 'gaussian', etc. [ all cells contain 'tabular' ]
Daniel@0 17 % params - params{i} contains optional arguments passed to the CPD constructor for node i,
Daniel@0 18 % or [] if none. [ all cells contain {'prior', 1}, meaning use uniform Dirichlet priors ]
Daniel@0 19 % discrete - the list of discrete nodes [ 1:N ]
Daniel@0 20 % clamped - clamped(i,m) = 1 if node i is clamped in case m [ zeros(N, ncases) ]
Daniel@0 21 %
Daniel@0 22 % e.g., score = score_dags(data, ns, mk_all_dags(n), 'scoring_fn', 'bic', 'params', []);
Daniel@0 23 %
Daniel@0 24 % If the DAGs have a lot of families in common, we can cache the sufficient statistics,
Daniel@0 25 % making this potentially more efficient than scoring the DAGs one at a time.
Daniel@0 26 % (Caching is not currently implemented, however.)
Daniel@0 27
Daniel@0 28 [n ncases] = size(data);
Daniel@0 29
Daniel@0 30 % set default params
Daniel@0 31 type = cell(1,n);
Daniel@0 32 params = cell(1,n);
Daniel@0 33 for i=1:n
Daniel@0 34 type{i} = 'tabular';
Daniel@0 35 params{i} = { 'prior_type', 'dirichlet', 'dirichlet_weight', 1 };
Daniel@0 36 end
Daniel@0 37 scoring_fn = 'bayesian';
Daniel@0 38 discrete = 1:n;
Daniel@0 39 clamped = zeros(n, ncases);
Daniel@0 40
Daniel@0 41 args = varargin;
Daniel@0 42 nargs = length(args);
Daniel@0 43 for i=1:2:nargs
Daniel@0 44 switch args{i},
Daniel@0 45 case 'scoring_fn', scoring_fn = args{i+1};
Daniel@0 46 case 'type', type = args{i+1};
Daniel@0 47 case 'discrete', discrete = args{i+1};
Daniel@0 48 case 'clamped', clamped = args{i+1};
Daniel@0 49 case 'params', if isempty(args{i+1}), params = cell(1,n); else params = args{i+1}; end
Daniel@0 50 end
Daniel@0 51 end
Daniel@0 52
Daniel@0 53 NG = length(dags);
Daniel@0 54 score = zeros(1, NG);
Daniel@0 55 for g=1:NG
Daniel@0 56 dag = dags{g};
Daniel@0 57 for j=1:n
Daniel@0 58 u = find(clamped(j,:)==0);
Daniel@0 59 ps = parents(dag, j);
Daniel@0 60 score(g) = score(g) + score_family(j, ps, type{j}, scoring_fn, ns, discrete, data(:,u), params{j});
Daniel@0 61 end
Daniel@0 62 end