annotate toolboxes/FullBNT-1.0.7/bnt/inference/dynamic/@hmm_inf_engine/fwdback_twoslice.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [alpha, beta, gamma, loglik, xi, gamma2] = fwdback_twoslice(engine, init_state_distrib, transmat, obslik, varargin)
Daniel@0 2 % FWDBACK Compute the posterior probs. in an HMM using the forwards backwards algo.
Daniel@0 3 %
Daniel@0 4 % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(init_state_distrib, transmat, obslik, ...)
Daniel@0 5 %
Daniel@0 6 % Notation:
Daniel@0 7 % Y(t) = observation, Q(t) = hidden state, M(t) = mixture variable (for MOG outputs)
Daniel@0 8 % A(t) = discrete input (action) (for POMDP models)
Daniel@0 9 %
Daniel@0 10 % INPUT:
Daniel@0 11 % init_state_distrib(i) = Pr(Q(1) = i)
Daniel@0 12 % transmat(i,j) = Pr(Q(t) = j | Q(t-1)=i)
Daniel@0 13 % or transmat{a}(i,j) = Pr(Q(t) = j | Q(t-1)=i, A(t-1)=a) if there are discrete inputs
Daniel@0 14 % obslik(i,t) = Pr(Y(t)| Q(t)=i)
Daniel@0 15 % (Compute obslik using eval_pdf_xxx on your data sequence first.)
Daniel@0 16 %
Daniel@0 17 % Optional parameters may be passed as 'param_name', param_value pairs.
Daniel@0 18 % Parameter names are shown below; default values in [] - if none, argument is mandatory.
Daniel@0 19 %
Daniel@0 20 % For HMMs with MOG outputs: if you want to compute gamma2, you must specify
Daniel@0 21 % 'obslik2' - obslik(i,j,t) = Pr(Y(t)| Q(t)=i,M(t)=j) []
Daniel@0 22 % 'mixmat' - mixmat(i,j) = Pr(M(t) = j | Q(t)=i) []
Daniel@0 23 %
Daniel@0 24 % For HMMs with discrete inputs:
Daniel@0 25 % 'act' - act(t) = action performed at step t
Daniel@0 26 %
Daniel@0 27 % Optional arguments:
Daniel@0 28 % 'fwd_only' - if 1, only do a forwards pass and set beta=[], gamma2=[] [0]
Daniel@0 29 % 'scaled' - if 1, normalize alphas and betas to prevent underflow [1]
Daniel@0 30 % 'maximize' - if 1, use max-product instead of sum-product [0]
Daniel@0 31 %
Daniel@0 32 % OUTPUTS:
Daniel@0 33 % alpha(i,t) = p(Q(t)=i | y(1:t)) (or p(Q(t)=i, y(1:t)) if scaled=0)
Daniel@0 34 % beta(i,t) = p(y(t+1:T) | Q(t)=i)*p(y(t+1:T)|y(1:t)) (or p(y(t+1:T) | Q(t)=i) if scaled=0)
Daniel@0 35 % gamma(i,t) = p(Q(t)=i | y(1:T))
Daniel@0 36 % loglik = log p(y(1:T))
Daniel@0 37 % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:T))
Daniel@0 38 % gamma2(j,k,t) = p(Q(t)=j, M(t)=k | y(1:T)) (only for MOG outputs)
Daniel@0 39 %
Daniel@0 40 % If fwd_only = 1, these become
Daniel@0 41 % alpha(i,t) = p(Q(t)=i | y(1:t))
Daniel@0 42 % beta = []
Daniel@0 43 % gamma(i,t) = p(Q(t)=i | y(1:t))
Daniel@0 44 % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:t))
Daniel@0 45 % gamma2 = []
Daniel@0 46 %
Daniel@0 47 % Note: we only compute xi if it is requested as a return argument, since it can be very large.
Daniel@0 48 % Similarly, we only compute gamma2 on request (and if using MOG outputs).
Daniel@0 49 %
Daniel@0 50 % Examples:
Daniel@0 51 %
Daniel@0 52 % [alpha, beta, gamma, loglik] = fwdback(pi, A, multinomial_prob(sequence, B));
Daniel@0 53 %
Daniel@0 54 % [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat);
Daniel@0 55 % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(pi, A, B, 'obslik2', B2, 'mixmat', mixmat);
Daniel@0 56
Daniel@0 57
Daniel@0 58 if nargout >= 5, compute_xi = 1; else compute_xi = 0; end
Daniel@0 59 if nargout >= 6, compute_gamma2 = 1; else compute_gamma2 = 0; end
Daniel@0 60
Daniel@0 61 [obslik2, mixmat, fwd_only, scaled, act, maximize, compute_xi, compute_gamma2] = process_options(varargin, 'obslik2', [], 'mixmat', [], 'fwd_only', 0, 'scaled', 1, 'act', [], 'maximize', 0, 'compute_xi', compute_xi, 'compute_gamma2', compute_gamma2);
Daniel@0 62
Daniel@0 63
Daniel@0 64 [Q T] = size(obslik);
Daniel@0 65
Daniel@0 66 if isempty(obslik2)
Daniel@0 67 compute_gamma2 = 0;
Daniel@0 68 end
Daniel@0 69
Daniel@0 70 if isempty(act)
Daniel@0 71 act = ones(1,T);
Daniel@0 72 transmat = { transmat } ;
Daniel@0 73 end
Daniel@0 74
Daniel@0 75 scale = ones(1,T);
Daniel@0 76
Daniel@0 77 % scale(t) = Pr(O(t) | O(1:t-1)) = 1/c(t) as defined by Rabiner (1989).
Daniel@0 78 % Hence prod_t scale(t) = Pr(O(1)) Pr(O(2)|O(1)) Pr(O(3) | O(1:2)) = Pr(O(1), ... ,O(T))
Daniel@0 79 % or log P = sum_t log scale(t).
Daniel@0 80 % Rabiner suggests multiplying beta(t) by scale(t), but we can instead
Daniel@0 81 % normalise beta(t) - the constants will cancel when we compute gamma.
Daniel@0 82
Daniel@0 83 loglik = 0;
Daniel@0 84
Daniel@0 85 alpha = zeros(Q,T);
Daniel@0 86 gamma = zeros(Q,T);
Daniel@0 87 if compute_xi
Daniel@0 88 xi = zeros(Q,Q,T-1);
Daniel@0 89 else
Daniel@0 90 xi = [];
Daniel@0 91 end
Daniel@0 92
Daniel@0 93
Daniel@0 94 %%%%%%%%% Forwards %%%%%%%%%%
Daniel@0 95
Daniel@0 96 t = 1;
Daniel@0 97 alpha(:,1) = init_state_distrib(:) .* obslik(:,t);
Daniel@0 98 if scaled
Daniel@0 99 %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t));
Daniel@0 100 [alpha(:,t), scale(t)] = normalise(alpha(:,t));
Daniel@0 101 end
Daniel@0 102 if scaled, assert(approxeq(sum(alpha(:,t)),1)), end
Daniel@0 103 for t=2:T
Daniel@0 104 %trans = transmat(:,:,act(t-1))';
Daniel@0 105 trans = transmat{act(t-1)};
Daniel@0 106 if maximize
Daniel@0 107 m = max_mult(trans', alpha(:,t-1));
Daniel@0 108 %A = repmat(alpha(:,t-1), [1 Q]);
Daniel@0 109 %m = max(trans .* A, [], 1);
Daniel@0 110 else
Daniel@0 111 m = trans' * alpha(:,t-1);
Daniel@0 112 end
Daniel@0 113 alpha(:,t) = m(:) .* obslik(:,t);
Daniel@0 114 if scaled
Daniel@0 115 %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t));
Daniel@0 116 [alpha(:,t), scale(t)] = normalise(alpha(:,t));
Daniel@0 117 end
Daniel@0 118 if compute_xi & fwd_only % useful for online EM
Daniel@0 119 %xi(:,:,t-1) = normaliseC((alpha(:,t-1) * obslik(:,t)') .* trans);
Daniel@0 120 xi(:,:,t-1) = normalise((alpha(:,t-1) * obslik(:,t)') .* trans);
Daniel@0 121 end
Daniel@0 122 if scaled, assert(approxeq(sum(alpha(:,t)),1)), end
Daniel@0 123 end
Daniel@0 124 if scaled
Daniel@0 125 if any(scale==0)
Daniel@0 126 loglik = -inf;
Daniel@0 127 else
Daniel@0 128 loglik = sum(log(scale));
Daniel@0 129 end
Daniel@0 130 else
Daniel@0 131 loglik = log(sum(alpha(:,T)));
Daniel@0 132 end
Daniel@0 133
Daniel@0 134 if fwd_only
Daniel@0 135 gamma = alpha;
Daniel@0 136 beta = [];
Daniel@0 137 gamma2 = [];
Daniel@0 138 return;
Daniel@0 139 end
Daniel@0 140
Daniel@0 141
Daniel@0 142 %%%%%%%%% Backwards %%%%%%%%%%
Daniel@0 143
Daniel@0 144 beta = zeros(Q,T);
Daniel@0 145 if compute_gamma2
Daniel@0 146 M = size(mixmat, 2);
Daniel@0 147 gamma2 = zeros(Q,M,T);
Daniel@0 148 else
Daniel@0 149 gamma2 = [];
Daniel@0 150 end
Daniel@0 151
Daniel@0 152 beta(:,T) = ones(Q,1);
Daniel@0 153 %gamma(:,T) = normaliseC(alpha(:,T) .* beta(:,T));
Daniel@0 154 gamma(:,T) = normalise(alpha(:,T) .* beta(:,T));
Daniel@0 155 t=T;
Daniel@0 156 if compute_gamma2
Daniel@0 157 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing
Daniel@0 158 gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]);
Daniel@0 159 %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); % wrong!
Daniel@0 160 end
Daniel@0 161 for t=T-1:-1:1
Daniel@0 162 b = beta(:,t+1) .* obslik(:,t+1);
Daniel@0 163 %trans = transmat(:,:,act(t));
Daniel@0 164 trans = transmat{act(t)};
Daniel@0 165 if maximize
Daniel@0 166 B = repmat(b(:)', Q, 1);
Daniel@0 167 beta(:,t) = max(trans .* B, [], 2);
Daniel@0 168 else
Daniel@0 169 beta(:,t) = trans * b;
Daniel@0 170 end
Daniel@0 171 if scaled
Daniel@0 172 %beta(:,t) = normaliseC(beta(:,t));
Daniel@0 173 beta(:,t) = normalise(beta(:,t));
Daniel@0 174 end
Daniel@0 175 %gamma(:,t) = normaliseC(alpha(:,t) .* beta(:,t));
Daniel@0 176 gamma(:,t) = normalise(alpha(:,t) .* beta(:,t));
Daniel@0 177 if compute_xi
Daniel@0 178 %xi(:,:,t) = normaliseC((trans .* (alpha(:,t) * b')));
Daniel@0 179 xi(:,:,t) = normalise((trans .* (alpha(:,t) * b')));
Daniel@0 180 %xi(:,:,t) = (trans .* (alpha(:,t) * b'));
Daniel@0 181 end
Daniel@0 182 if compute_gamma2
Daniel@0 183 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing
Daniel@0 184 gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]);
Daniel@0 185 %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]));
Daniel@0 186 end
Daniel@0 187 end
Daniel@0 188
Daniel@0 189
Daniel@0 190 % We now explain the equation for gamma2
Daniel@0 191 % Let zt=y(1:t-1,t+1:T) be all observations except y(t)
Daniel@0 192 % gamma2(Q,M,t) = P(Qt,Mt|yt,zt) = P(yt|Qt,Mt,zt) P(Qt,Mt|zt) / P(yt|zt)
Daniel@0 193 % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|zt) / P(yt|zt)
Daniel@0 194 % Now gamma(Q,t) = P(Qt|yt,zt) = P(yt|Qt) P(Qt|zt) / P(yt|zt)
Daniel@0 195 % hence
Daniel@0 196 % P(Qt,Mt|yt,zt) = P(yt|Qt,Mt) P(Mt|Qt) [P(Qt|yt,zt) P(yt|zt) / P(yt|Qt)] / P(yt|zt)
Daniel@0 197 % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|yt,zt) / P(yt|Qt)
Daniel@0 198 %