annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/dtree/test_housing.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 % Here the training data is adapted from UCI ML repository, 'housing' data
Daniel@0 2 % Input variables: 12 continous, one binary
Daniel@0 3 % Ouput variables: continous
Daniel@0 4 % The testing result trace is in the end of this script, it is same to the graph in page 219 of
Daniel@0 5 % Leo Brieman etc. 1984 book titled "Classification and regression trees".
Daniel@0 6
Daniel@0 7 dtreeCPD=tree_CPD;
Daniel@0 8
Daniel@0 9 % load data
Daniel@0 10 fname = fullfile(BNT_HOME, 'examples', 'static', 'uci_data', 'housing', 'housing.data');
Daniel@0 11 data=load(fname);
Daniel@0 12 data=data';
Daniel@0 13 data=transform_data_into_bnt_format(data,[1:3,5:14]);
Daniel@0 14
Daniel@0 15 % learn decision tree from data
Daniel@0 16 ns=1*ones(1,14);
Daniel@0 17 ns(4)=2;
Daniel@0 18 dtreeCPD1=learn_params(dtreeCPD,1:14,data,ns,[1:3,5:14],'stop_cases',5,'min_gain',0.006);
Daniel@0 19
Daniel@0 20 % evaluate on data
Daniel@0 21 [score,outputs]=evaluate_tree_performance(dtreeCPD1,1:14,data,ns,[1:3,5:14]);
Daniel@0 22 fprintf('Mean square deviation (using regression tree to predict) in old training data %6.3f\n',score);
Daniel@0 23
Daniel@0 24
Daniel@0 25 % show decision tree using graphpad
Daniel@0 26 % It should be easy, but still not implemented
Daniel@0 27
Daniel@0 28
Daniel@0 29
Daniel@0 30 % >> test_housing
Daniel@0 31 % Create node 1 split at 6 gain 38.2205 Th 6.939000e+000. Mean 22.5328 Cases 506
Daniel@0 32 % Create node 2 split at 13 gain 14.4503 Th 1.437000e+001. Mean 19.9337 Cases 430
Daniel@0 33 % Create node 3 split at 8 gain 4.9809 Th 1.358000e+000. Mean 23.3498 Cases 255
Daniel@0 34 % Create node 4 split at 1 gain 0.7722 Th 1.023300e+001. Mean 45.5800 Cases 5
Daniel@0 35 % Create leaf node(samevalue) 5. Mean 50.0000 Std 0.0000 Cases 4
Daniel@0 36 % Add subtree node 5 to 4. #nodes 5
Daniel@0 37 % Create leaf node(samevalue) 6. Mean 27.9000 Std 0.0000 Cases 1
Daniel@0 38 % Add subtree node 6 to 4. #nodes 6
Daniel@0 39 % Add subtree node 4 to 3. #nodes 6
Daniel@0 40 % Create node 7 split at 6 gain 2.8497 Th 6.540000e+000. Mean 22.9052 Cases 250
Daniel@0 41 % Create node 8 split at 13 gain 0.5970 Th 7.560000e+000. Mean 21.6297 Cases 195
Daniel@0 42 % Create leaf node(nogain) 9. Mean 23.9698 Std 1.7568 Cases 43
Daniel@0 43 % Add subtree node 9 to 8. #nodes 9
Daniel@0 44 % Create leaf node(nogain) 10. Mean 20.9678 Std 2.8242 Cases 152
Daniel@0 45 % Add subtree node 10 to 8. #nodes 10
Daniel@0 46 % Add subtree node 8 to 7. #nodes 10
Daniel@0 47 % Create leaf node(nogain) 11. Mean 27.4273 Std 3.4512 Cases 55
Daniel@0 48 % Add subtree node 11 to 7. #nodes 11
Daniel@0 49 % Add subtree node 7 to 3. #nodes 11
Daniel@0 50 % Add subtree node 3 to 2. #nodes 11
Daniel@0 51 % Create node 12 split at 1 gain 2.2467 Th 6.962150e+000. Mean 14.9560 Cases 175
Daniel@0 52 % Create node 13 split at 5 gain 0.5172 Th 5.240000e-001. Mean 17.1376 Cases 101
Daniel@0 53 % Create leaf node(nogain) 14. Mean 20.0208 Std 3.0672 Cases 24
Daniel@0 54 % Add subtree node 14 to 13. #nodes 14
Daniel@0 55 % Create leaf node(nogain) 15. Mean 16.2390 Std 2.9746 Cases 77
Daniel@0 56 % Add subtree node 15 to 13. #nodes 15
Daniel@0 57 % Add subtree node 13 to 12. #nodes 15
Daniel@0 58 % Create node 16 split at 5 gain 0.6133 Th 6.050000e-001. Mean 11.9784 Cases 74
Daniel@0 59 % Create leaf node(nogain) 17. Mean 16.6333 Std 4.5052 Cases 12
Daniel@0 60 % Add subtree node 17 to 16. #nodes 17
Daniel@0 61 % Create leaf node(nogain) 18. Mean 11.0774 Std 3.0090 Cases 62
Daniel@0 62 % Add subtree node 18 to 16. #nodes 18
Daniel@0 63 % Add subtree node 16 to 12. #nodes 18
Daniel@0 64 % Add subtree node 12 to 2. #nodes 18
Daniel@0 65 % Add subtree node 2 to 1. #nodes 18
Daniel@0 66 % Create node 19 split at 6 gain 6.0493 Th 7.420000e+000. Mean 37.2382 Cases 76
Daniel@0 67 % Create node 20 split at 1 gain 1.9900 Th 7.367110e+000. Mean 32.1130 Cases 46
Daniel@0 68 % Create node 21 split at 8 gain 0.6273 Th 1.877300e+000. Mean 33.3488 Cases 43
Daniel@0 69 % Create leaf node(samevalue) 22. Mean 45.6500 Std 6.1518 Cases 2
Daniel@0 70 % Add subtree node 22 to 21. #nodes 22
Daniel@0 71 % Create leaf node(nogain) 23. Mean 32.7488 Std 3.5690 Cases 41
Daniel@0 72 % Add subtree node 23 to 21. #nodes 23
Daniel@0 73 % Add subtree node 21 to 20. #nodes 23
Daniel@0 74 % Create leaf node(samevalue) 24. Mean 14.4000 Std 3.7363 Cases 3
Daniel@0 75 % Add subtree node 24 to 20. #nodes 24
Daniel@0 76 % Add subtree node 20 to 19. #nodes 24
Daniel@0 77 % Create node 25 split at 1 gain 1.1001 Th 2.733970e+000. Mean 45.0967 Cases 30
Daniel@0 78 % Create leaf node(nogain) 26. Mean 45.8966 Std 4.4005 Cases 29
Daniel@0 79 % Add subtree node 26 to 25. #nodes 26
Daniel@0 80 % Create leaf node(samevalue) 27. Mean 21.9000 Std 0.0000 Cases 1
Daniel@0 81 % Add subtree node 27 to 25. #nodes 27
Daniel@0 82 % Add subtree node 25 to 19. #nodes 27
Daniel@0 83 % Add subtree node 19 to 1. #nodes 27
Daniel@0 84 % Mean square deviation (using regression tree to predict) in old training data 9.405
Daniel@0 85 %
Daniel@0 86
Daniel@0 87