annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/Zoubin/mfa.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 % function [Lh,Ph,Mu,Pi,LL]=mfa(X,M,K,cyc,tol);
Daniel@0 2 %
Daniel@0 3 % Maximum Likelihood Mixture of Factor Analysis using EM
Daniel@0 4 %
Daniel@0 5 % X - data matrix
Daniel@0 6 % M - number of mixtures (default 1)
Daniel@0 7 % K - number of factors in each mixture (default 2)
Daniel@0 8 % cyc - maximum number of cycles of EM (default 100)
Daniel@0 9 % tol - termination tolerance (prop change in likelihood) (default 0.0001)
Daniel@0 10 %
Daniel@0 11 % Lh - factor loadings
Daniel@0 12 % Ph - diagonal uniquenesses matrix
Daniel@0 13 % Mu - mean vectors
Daniel@0 14 % Pi - priors
Daniel@0 15 % LL - log likelihood curve
Daniel@0 16 %
Daniel@0 17 % Iterates until a proportional change < tol in the log likelihood
Daniel@0 18 % or cyc steps of EM
Daniel@0 19
Daniel@0 20 function [Lh, Ph, Mu, Pi, LL] = mfa(X,M,K,cyc,tol)
Daniel@0 21
Daniel@0 22 if nargin<5 tol=0.0001; end;
Daniel@0 23 if nargin<4 cyc=100; end;
Daniel@0 24 if nargin<3 K=2; end;
Daniel@0 25 if nargin<2 M=1; end;
Daniel@0 26
Daniel@0 27 N=length(X(:,1));
Daniel@0 28 D=length(X(1,:));
Daniel@0 29 tiny=exp(-700);
Daniel@0 30
Daniel@0 31 %rand('state',0);
Daniel@0 32
Daniel@0 33 fprintf('\n');
Daniel@0 34
Daniel@0 35 if (M==1)
Daniel@0 36 [Lh,Ph,LL]=ffa(X,K,cyc,tol);
Daniel@0 37 Mu=mean(X);
Daniel@0 38 Pi=1;
Daniel@0 39 else
Daniel@0 40 if N==1
Daniel@0 41 mX = X;
Daniel@0 42 else
Daniel@0 43 mX=mean(X);
Daniel@0 44 end
Daniel@0 45 cX=cov(X);
Daniel@0 46 scale=det(cX)^(1/D);
Daniel@0 47 randn('state',0);
Daniel@0 48 Lh=randn(D*M,K)*sqrt(scale/K);
Daniel@0 49 Ph=diag(cX)+tiny;
Daniel@0 50 Pi=ones(M,1)/M;
Daniel@0 51 %randn('state',0);
Daniel@0 52 Mu=randn(M,D)*sqrtm(cX)+ones(M,1)*mX;
Daniel@0 53 oldMu=Mu;
Daniel@0 54 I=eye(K);
Daniel@0 55
Daniel@0 56 lik=0;
Daniel@0 57 LL=[];
Daniel@0 58
Daniel@0 59 H=zeros(N,M); % E(w|x)
Daniel@0 60 EZ=zeros(N*M,K);
Daniel@0 61 EZZ=zeros(K*M,K);
Daniel@0 62 XX=zeros(D*M,D);
Daniel@0 63 s=zeros(M,1);
Daniel@0 64 const=(2*pi)^(-D/2);
Daniel@0 65 %%%%%%%%%%%%%%%%%%%%
Daniel@0 66 for i=1:cyc;
Daniel@0 67
Daniel@0 68 %%%% E Step %%%%
Daniel@0 69
Daniel@0 70 Phi=1./Ph;
Daniel@0 71 Phid=diag(Phi);
Daniel@0 72 for k=1:M
Daniel@0 73 Lht=Lh((k-1)*D+1:k*D,:);
Daniel@0 74 LP=Phid*Lht;
Daniel@0 75 MM=Phid-LP*inv(I+Lht'*LP)*LP';
Daniel@0 76 dM=sqrt(det(MM));
Daniel@0 77 Xk=(X-ones(N,1)*Mu(k,:));
Daniel@0 78 XM=Xk*MM;
Daniel@0 79 H(:,k)=const*Pi(k)*dM*exp(-0.5*rsum(XM.*Xk));
Daniel@0 80 EZ((k-1)*N+1:k*N,:)=XM*Lht;
Daniel@0 81 end;
Daniel@0 82
Daniel@0 83 Hsum=rsum(H);
Daniel@0 84 oldlik=lik;
Daniel@0 85 lik=sum(log(Hsum+(Hsum==0)*exp(-744)));
Daniel@0 86
Daniel@0 87 Hzero=(Hsum==0); Nz=sum(Hzero);
Daniel@0 88 H(Hzero,:)=tiny*ones(Nz,M)/M;
Daniel@0 89 Hsum(Hzero)=tiny*ones(Nz,1);
Daniel@0 90
Daniel@0 91 H=rdiv(H,Hsum);
Daniel@0 92 s=csum(H);
Daniel@0 93 s=s+(s==0)*tiny;
Daniel@0 94 s2=sum(s)+tiny;
Daniel@0 95
Daniel@0 96 for k=1:M
Daniel@0 97 kD=(k-1)*D+1:k*D;
Daniel@0 98 Lht=Lh(kD,:);
Daniel@0 99 LP=Phid*Lht;
Daniel@0 100 MM=Phid-LP*inv(I+Lht'*LP)*LP';
Daniel@0 101 Xk=(X-ones(N,1)*Mu(k,:));
Daniel@0 102 XX(kD,:)=rprod(Xk,H(:,k))'*Xk/s(k);
Daniel@0 103 beta=Lht'*MM;
Daniel@0 104 EZZ((k-1)*K+1:k*K,:)=I-beta*Lht +beta*XX(kD,:)*beta';
Daniel@0 105 end;
Daniel@0 106
Daniel@0 107 %%%% log likelihood %%%%
Daniel@0 108
Daniel@0 109 LL=[LL lik];
Daniel@0 110 fprintf('cycle %g \tlog likelihood %g ',i,lik);
Daniel@0 111
Daniel@0 112 if (i<=2)
Daniel@0 113 likbase=lik;
Daniel@0 114 elseif (lik<oldlik)
Daniel@0 115 fprintf(' violation');
Daniel@0 116 elseif ((lik-likbase)<(1 + tol)*(oldlik-likbase)||~isfinite(lik))
Daniel@0 117 break;
Daniel@0 118 end;
Daniel@0 119
Daniel@0 120 fprintf('\n');
Daniel@0 121
Daniel@0 122 %%%% M Step %%%%
Daniel@0 123
Daniel@0 124 % means and covariance structure
Daniel@0 125
Daniel@0 126 Ph=zeros(D,1);
Daniel@0 127 for k=1:M
Daniel@0 128 kD=(k-1)*D+1:k*D;
Daniel@0 129 kK=(k-1)*K+1:k*K;
Daniel@0 130 kN=(k-1)*N+1:k*N;
Daniel@0 131
Daniel@0 132 T0=rprod(X,H(:,k));
Daniel@0 133 T1=T0'*[EZ(kN,:) ones(N,1)];
Daniel@0 134 XH=EZ(kN,:)'*H(:,k);
Daniel@0 135 T2=inv([s(k)*EZZ(kK,:) XH; XH' s(k)]);
Daniel@0 136 T3=T1*T2;
Daniel@0 137 Lh(kD,:)=T3(:,1:K);
Daniel@0 138 Mu(k,:)=T3(:,K+1)';
Daniel@0 139 T4=diag(T0'*X-T3*T1')/s2;
Daniel@0 140 Ph=Ph+T4.*(T4>0);
Daniel@0 141 end;
Daniel@0 142
Daniel@0 143 Phmin=exp(-700);
Daniel@0 144 Ph=Ph.*(Ph>Phmin)+(Ph<=Phmin)*Phmin; % to avoid zero variances
Daniel@0 145
Daniel@0 146 % priors
Daniel@0 147 Pi=s'/s2;
Daniel@0 148
Daniel@0 149 end;
Daniel@0 150 fprintf('\n');
Daniel@0 151 end;
Daniel@0 152
Daniel@0 153