annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Map/learn_map.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 seed = 1;
Daniel@0 2 rand('state', seed);
Daniel@0 3 randn('state', seed);
Daniel@0 4
Daniel@0 5 obs_model = 'unique'; % each cell has a unique label (essentially fully observable)
Daniel@0 6 %obs_model = 'four'; % each cell generates 4 observations, NESW
Daniel@0 7
Daniel@0 8 % Generate the true network, and a randomization of it
Daniel@0 9 realnet = mk_map_hhmm('p', 0.9, 'obs_model', obs_model);
Daniel@0 10 rndnet = mk_rnd_map_hhmm('obs_model', obs_model);
Daniel@0 11 eclass = realnet.equiv_class;
Daniel@0 12 U = 1; A = 2; C = 3; F = 4; onodes = 5;
Daniel@0 13
Daniel@0 14 ss = realnet.nnodes_per_slice;
Daniel@0 15 T = 100;
Daniel@0 16 evidence = sample_dbn(realnet, 'length', T);
Daniel@0 17 ev = cell(ss,T);
Daniel@0 18 ev(onodes,:) = evidence(onodes,:);
Daniel@0 19
Daniel@0 20 infeng = jtree_dbn_inf_engine(rndnet);
Daniel@0 21
Daniel@0 22 if 0
Daniel@0 23 % suppose we do not observe the final finish node, but only know
Daniel@0 24 % it is more likely to be on that off
Daniel@0 25 ev2 = ev;
Daniel@0 26 infeng = enter_evidence(infeng, ev2, 'soft_evidence_nodes', [F T], 'soft_evidence', {[0.3 0.7]'});
Daniel@0 27 end
Daniel@0 28
Daniel@0 29
Daniel@0 30 learnednet = learn_params_dbn_em(infeng, {evidence}, 'max_iter', 5);
Daniel@0 31
Daniel@0 32 disp('real model')
Daniel@0 33 disp_map_hhmm(realnet)
Daniel@0 34
Daniel@0 35 disp('learned model')
Daniel@0 36 disp_map_hhmm(learnednet)
Daniel@0 37
Daniel@0 38 disp('rnd model')
Daniel@0 39 disp_map_hhmm(rndnet)
Daniel@0 40