annotate toolboxes/FullBNT-1.0.7/bnt/CPDs/@tabular_CPD/log_nextcase_prob_node.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function L = log_nextcase_prob_node(CPD, self_ev, pev, test_self_ev, test_pev)
Daniel@0 2 % LOG_NEXTCASE_PROB_NODE compute the joint distribution of a node (tabular) of a new case given
Daniel@0 3 % completely observed data.
Daniel@0 4 %
Daniel@0 5 % The input arguments are mainly similar with log_marg_prob_node(CPD, self_ev, pev, usecell),
Daniel@0 6 % but add test_self_ev, test_pev, and without usecell
Daniel@0 7 % test_self_ev(m) is the evidence on this node in a test case.
Daniel@0 8 % test_pev(i) is the evidence on the i'th parent in the test case (if there are any parents).
Daniel@0 9 %
Daniel@0 10 % Written by qian.diao@intel.com
Daniel@0 11
Daniel@0 12 ncases = length(self_ev);
Daniel@0 13 sz = CPD.sizes;
Daniel@0 14 nparents = length(sz)-1;
Daniel@0 15 assert(ncases == size(pev, 2));
Daniel@0 16
Daniel@0 17 if nargin < 6
Daniel@0 18 %usecell = 0;
Daniel@0 19 if iscell(self_ev)
Daniel@0 20 usecell = 1;
Daniel@0 21 else
Daniel@0 22 usecell = 0;
Daniel@0 23 end
Daniel@0 24 end
Daniel@0 25
Daniel@0 26
Daniel@0 27 if ncases==0
Daniel@0 28 L = 0;
Daniel@0 29 return;
Daniel@0 30 elseif ncases==1 % speedup the sequential learning case; here need correction!!!
Daniel@0 31 CPT = CPD.CPT;
Daniel@0 32 % We assume the CPTs are already set to the mean of the posterior (due to bayes_update_params)
Daniel@0 33 if usecell
Daniel@0 34 x = cat(1, pev{:})';
Daniel@0 35 y = self_ev{1};
Daniel@0 36 else
Daniel@0 37 %x = pev(:)';
Daniel@0 38 x = pev;
Daniel@0 39 y = self_ev;
Daniel@0 40 end
Daniel@0 41 switch nparents
Daniel@0 42 case 0, p = CPT(y);
Daniel@0 43 case 1, p = CPT(x(1), y);
Daniel@0 44 case 2, p = CPT(x(1), x(2), y);
Daniel@0 45 case 3, p = CPT(x(1), x(2), x(3), y);
Daniel@0 46 otherwise,
Daniel@0 47 ind = subv2ind(sz, [x y]);
Daniel@0 48 p = CPT(ind);
Daniel@0 49 end
Daniel@0 50 L = log(p);
Daniel@0 51 else
Daniel@0 52 % We ignore the CPTs here and assume the prior has not been changed
Daniel@0 53
Daniel@0 54 % We arrange the data as in the following example.
Daniel@0 55 % Let there be 2 parents and 3 cases. Let p(i,m) be parent i in case m,
Daniel@0 56 % and y(m) be the child in case m. Then we create the data matrix
Daniel@0 57 %
Daniel@0 58 % p(1,1) p(1,2) p(1,3)
Daniel@0 59 % p(2,1) p(2,2) p(2,3)
Daniel@0 60 % y(1) y(2) y(3)
Daniel@0 61 if usecell
Daniel@0 62 data = [cell2num(pev); cell2num(self_ev)];
Daniel@0 63 else
Daniel@0 64 data = [pev; self_ev];
Daniel@0 65 end
Daniel@0 66 counts = compute_counts(data, sz);
Daniel@0 67
Daniel@0 68 % compute the (N_ijk'+ N_ijk)/(N_ij' + N_ij) under the condition of 1_m+1,ijk = 1
Daniel@0 69 L = predict_family(counts, CPD.prior, test_self_ev, test_pev);
Daniel@0 70 end
Daniel@0 71
Daniel@0 72