annotate toolboxes/FullBNT-1.0.7/Kalman/learn_AR_diagonal.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [coef, C] = learn_AR_diagonal(y, k)
Daniel@0 2 % Find the ML parameters for a collection of independent scalar AR processes.
Daniel@0 3
Daniel@0 4 % sep_coef(1,1,t,i) is the coefficient to apply to compopnent i of the state vector t steps ago
Daniel@0 5 % eg. consider two components L and R and let A = coef(:,:,1,:), B = coef(:,:,2,:)
Daniel@0 6 % L3 (AL 0 BL 0) (L2) (CL 0 0 0)
Daniel@0 7 % R3 = (0 AR 0 BR) (R2) (0 CR 0 0)
Daniel@0 8 % L2 (1 0 0 0 ) (L1) + (0 0 0 0)
Daniel@0 9 % R2 (0 1 0 0 ) (R1) (0 0 0 0)
Daniel@0 10
Daniel@0 11 ss = size(y, 1);
Daniel@0 12 sep_coef = zeros(1,1,k,ss);
Daniel@0 13 for i=1:ss
Daniel@0 14 [sep_coef(:,:,:,i), sep_cov(i)] = learn_AR(k, y(i,:));
Daniel@0 15 end
Daniel@0 16 C = diag(sep_cov);
Daniel@0 17 for t=1:k
Daniel@0 18 x = sep_coef(1,1,t,:);
Daniel@0 19 coef(:,:,t) = diag(x(:));
Daniel@0 20 end