annotate toolboxes/FullBNT-1.0.7/Kalman/learn_AR_diagonal.m @ 0:cc4b1211e677
tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
author |
Daniel Wolff |
date |
Fri, 19 Aug 2016 13:07:06 +0200 |
parents |
|
children |
|
rev |
line source |
Daniel@0
|
1 function [coef, C] = learn_AR_diagonal(y, k)
|
Daniel@0
|
2 % Find the ML parameters for a collection of independent scalar AR processes.
|
Daniel@0
|
3
|
Daniel@0
|
4 % sep_coef(1,1,t,i) is the coefficient to apply to compopnent i of the state vector t steps ago
|
Daniel@0
|
5 % eg. consider two components L and R and let A = coef(:,:,1,:), B = coef(:,:,2,:)
|
Daniel@0
|
6 % L3 (AL 0 BL 0) (L2) (CL 0 0 0)
|
Daniel@0
|
7 % R3 = (0 AR 0 BR) (R2) (0 CR 0 0)
|
Daniel@0
|
8 % L2 (1 0 0 0 ) (L1) + (0 0 0 0)
|
Daniel@0
|
9 % R2 (0 1 0 0 ) (R1) (0 0 0 0)
|
Daniel@0
|
10
|
Daniel@0
|
11 ss = size(y, 1);
|
Daniel@0
|
12 sep_coef = zeros(1,1,k,ss);
|
Daniel@0
|
13 for i=1:ss
|
Daniel@0
|
14 [sep_coef(:,:,:,i), sep_cov(i)] = learn_AR(k, y(i,:));
|
Daniel@0
|
15 end
|
Daniel@0
|
16 C = diag(sep_cov);
|
Daniel@0
|
17 for t=1:k
|
Daniel@0
|
18 x = sep_coef(1,1,t,:);
|
Daniel@0
|
19 coef(:,:,t) = diag(x(:));
|
Daniel@0
|
20 end
|