annotate toolboxes/FullBNT-1.0.7/KPMtools/plotgauss2d.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function h=plotgauss2d(mu, Sigma)
Daniel@0 2 % PLOTGAUSS2D Plot a 2D Gaussian as an ellipse with optional cross hairs
Daniel@0 3 % h=plotgauss2(mu, Sigma)
Daniel@0 4 %
Daniel@0 5
Daniel@0 6 h = plotcov2(mu, Sigma);
Daniel@0 7 return;
Daniel@0 8
Daniel@0 9 %%%%%%%%%%%%%%%%%%%%%%%%
Daniel@0 10
Daniel@0 11 % PLOTCOV2 - Plots a covariance ellipse with major and minor axes
Daniel@0 12 % for a bivariate Gaussian distribution.
Daniel@0 13 %
Daniel@0 14 % Usage:
Daniel@0 15 % h = plotcov2(mu, Sigma[, OPTIONS]);
Daniel@0 16 %
Daniel@0 17 % Inputs:
Daniel@0 18 % mu - a 2 x 1 vector giving the mean of the distribution.
Daniel@0 19 % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
Daniel@0 20 % the covariance of the distribution (or the zero matrix).
Daniel@0 21 %
Daniel@0 22 % Options:
Daniel@0 23 % 'conf' - a scalar between 0 and 1 giving the confidence
Daniel@0 24 % interval (i.e., the fraction of probability mass to
Daniel@0 25 % be enclosed by the ellipse); default is 0.9.
Daniel@0 26 % 'num-pts' - the number of points to be used to plot the
Daniel@0 27 % ellipse; default is 100.
Daniel@0 28 %
Daniel@0 29 % This function also accepts options for PLOT.
Daniel@0 30 %
Daniel@0 31 % Outputs:
Daniel@0 32 % h - a vector of figure handles to the ellipse boundary and
Daniel@0 33 % its major and minor axes
Daniel@0 34 %
Daniel@0 35 % See also: PLOTCOV3
Daniel@0 36
Daniel@0 37 % Copyright (C) 2002 Mark A. Paskin
Daniel@0 38
Daniel@0 39 function h = plotcov2(mu, Sigma, varargin)
Daniel@0 40
Daniel@0 41 if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
Daniel@0 42 if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
Daniel@0 43
Daniel@0 44 [p, ...
Daniel@0 45 n, ...
Daniel@0 46 plot_opts] = process_options(varargin, 'conf', 0.9, ...
Daniel@0 47 'num-pts', 100);
Daniel@0 48 h = [];
Daniel@0 49 holding = ishold;
Daniel@0 50 if (Sigma == zeros(2, 2))
Daniel@0 51 z = mu;
Daniel@0 52 else
Daniel@0 53 % Compute the Mahalanobis radius of the ellipsoid that encloses
Daniel@0 54 % the desired probability mass.
Daniel@0 55 k = conf2mahal(p, 2);
Daniel@0 56 % The major and minor axes of the covariance ellipse are given by
Daniel@0 57 % the eigenvectors of the covariance matrix. Their lengths (for
Daniel@0 58 % the ellipse with unit Mahalanobis radius) are given by the
Daniel@0 59 % square roots of the corresponding eigenvalues.
Daniel@0 60 if (issparse(Sigma))
Daniel@0 61 [V, D] = eigs(Sigma);
Daniel@0 62 else
Daniel@0 63 [V, D] = eig(Sigma);
Daniel@0 64 end
Daniel@0 65 % Compute the points on the surface of the ellipse.
Daniel@0 66 t = linspace(0, 2*pi, n);
Daniel@0 67 u = [cos(t); sin(t)];
Daniel@0 68 w = (k * V * sqrt(D)) * u;
Daniel@0 69 z = repmat(mu, [1 n]) + w;
Daniel@0 70 % Plot the major and minor axes.
Daniel@0 71 L = k * sqrt(diag(D));
Daniel@0 72 h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
Daniel@0 73 [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
Daniel@0 74 hold on;
Daniel@0 75 h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
Daniel@0 76 [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
Daniel@0 77 end
Daniel@0 78
Daniel@0 79 h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
Daniel@0 80 if (~holding) hold off; end
Daniel@0 81
Daniel@0 82 %%%%%%%%%%%%
Daniel@0 83
Daniel@0 84 % CONF2MAHAL - Translates a confidence interval to a Mahalanobis
Daniel@0 85 % distance. Consider a multivariate Gaussian
Daniel@0 86 % distribution of the form
Daniel@0 87 %
Daniel@0 88 % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C)))
Daniel@0 89 %
Daniel@0 90 % where MD(x, m, P) is the Mahalanobis distance from x
Daniel@0 91 % to m under P:
Daniel@0 92 %
Daniel@0 93 % MD(x, m, P) = (x - m) * P * (x - m)'
Daniel@0 94 %
Daniel@0 95 % A particular Mahalanobis distance k identifies an
Daniel@0 96 % ellipsoid centered at the mean of the distribution.
Daniel@0 97 % The confidence interval associated with this ellipsoid
Daniel@0 98 % is the probability mass enclosed by it. Similarly,
Daniel@0 99 % a particular confidence interval uniquely determines
Daniel@0 100 % an ellipsoid with a fixed Mahalanobis distance.
Daniel@0 101 %
Daniel@0 102 % If X is an d dimensional Gaussian-distributed vector,
Daniel@0 103 % then the Mahalanobis distance of X is distributed
Daniel@0 104 % according to the Chi-squared distribution with d
Daniel@0 105 % degrees of freedom. Thus, the Mahalanobis distance is
Daniel@0 106 % determined by evaluating the inverse cumulative
Daniel@0 107 % distribution function of the chi squared distribution
Daniel@0 108 % up to the confidence value.
Daniel@0 109 %
Daniel@0 110 % Usage:
Daniel@0 111 %
Daniel@0 112 % m = conf2mahal(c, d);
Daniel@0 113 %
Daniel@0 114 % Inputs:
Daniel@0 115 %
Daniel@0 116 % c - the confidence interval
Daniel@0 117 % d - the number of dimensions of the Gaussian distribution
Daniel@0 118 %
Daniel@0 119 % Outputs:
Daniel@0 120 %
Daniel@0 121 % m - the Mahalanobis radius of the ellipsoid enclosing the
Daniel@0 122 % fraction c of the distribution's probability mass
Daniel@0 123 %
Daniel@0 124 % See also: MAHAL2CONF
Daniel@0 125
Daniel@0 126 % Copyright (C) 2002 Mark A. Paskin
Daniel@0 127
Daniel@0 128 function m = conf2mahal(c, d)
Daniel@0 129
Daniel@0 130 m = chi2inv(c, d); % matlab stats toolbox