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1 .  INTRODUCTION

Conditions of Use
The Toolbox is free software; you can redistribute it and/or modify it under the terms of ver-
sion 2 of GNU General Public License as published by the Free Software Foundation. 

When MIRtoolbox is used for academic research, we would highly appreciate if scientific publi-
cations of works partly based on MIRtoolbox cite one of the following publications:

Olivier Lartillot, Petri Toiviainen, “A Matlab Toolbox for Musical Feature Extraction From 
Audio”, International Conference on Digital Audio Effects, Bordeaux, 2007.

Olivier Lartillot, Petri Toiviainen, Tuomas Eerola, “A Matlab Toolbox for Music Information 
Retrieval”, in C. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (Eds.), Data Analysis, 
Machine Learning and Applications, Studies in Classification, Data Analysis, and Knowledge Or-
ganization, Springer-Verlag, 2008.

For commercial use of MIRtoolbox, please contact the authors.

Please Register
Please register to the MIRtoolbox announcement list. 

This will allow us to estimate the number of users, and this will allow you in return to get in-
formed on the new major releases (including critical bug fixes).

Documentation and Support
The URL of MIRtoolbox website is www.jyu.fi/music/coe/materials/mirtoolbox

M I R T O O L B O X  D I S C U S S I O N  L I S T
A discussion list is also available:

• To subscribe, send an empty mail with ‘Subscribe’ as subject to 
mirtoolbox-request@freelists.org

• The archive is available here.
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M I R T O O L B O X  T W E E T S
Get informed of the day-to-day advance of the project (bug reports, bug fixes, new features, 
new topics, etc.) by following @mirtoolbox.

T U T O R I A L  V I D E O
Video recordings of a tutorial given during SMC09 are available on YouTube.

Background

A B O U T  T H E  A U T H O R S
Olivier Lartillot, Petri Toiviainen and Tuomas Eerola are members of the Finnish Centre of Excel-
lence in Interdisciplinary Music Research, University of Jyväskylä, Finland.

The development of the toolbox has benefitted from productive collaborations with:

• partners of the Brain Tuning project (Marco Fabiani, Jose Fornari, Anders Friberg, Roberto 
Bresin, ...), 

• colleagues from the Centre of Excellence (Pasi Saari, Vinoo Alluri, Rafael Ferrer, Marc 
Thompson, ...),

• students of the MMT master program, 

• external collaborators: Jakob Abeßer (Fraunhofer IDMT), Thomas Wosch and associates 
(MEM, FHWS), Cyril Laurier and Emilia Gomez, (MTG-UPF),

• active users of the toolbox, participating in particular to the discussion list,

• participants of the SMC Summer School 2007, ISSSM 2007, ISSSCCM 2009, USMIR 2010.

T U N I N G  T H E  B R A I N  F O R  M U S I C
MIRtoolbox has been developed within the context of a Europeen Project called “Tuning the 
Brain for Music”, funded by the NEST (New and Emerging Science and Technology) program of 
the European Commission. The project, coordinated by Mari Tervaniemi from the Cognitive 
Brain Research Unit of the Department of Helsinki, is dedicated to the study of music and 
emotion, with collaboration between neurosciences, cognitive psychology and computer sci-
ence. One particular question, studied in collaboration between the Music Cognition Team of 
the University of Jyväskylä and the Music Acoustics Group of the KTH in Stockholm, is re-
lated to the investigation of the relation between musical features and music-induced emotion. 
In particular, we would like to know which musical parameters can be related to the induction 
of particular emotion when playing or listening to music. For that purpose, we needed to ex-
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tract a large set of musical features from large audio data-bases, in order to perform in a second 
step a statistical mapping between the diverse musical parameters and musical materials with 
listeners’ emotional ratings. This requires in particular a management of the interdependencies 
between the diverse features – in order to avoid having to recompute the same operations 
again and again – and also a control of the memory costs while analyzing the databases.

M U S I C ,  M I N D ,  T E C H N O L O G Y
The Music Cognition Team has recently introduced a new master degree, called Music Mind 
Technology (MMT). The Music Information Retrieval course, taught by Petri Toiviainen, Vinoo 
Alluri and myself, offers an overview of computer-based research for music analysis and in par-
ticular musical feature extraction. For the hands-on sessions, we wanted the student to be able 
to try by themselves the different computational approaches using Matlab. As many of them 
did not have much background in this programming environment, we decided to design a 
computational environment for musical feature extraction aimed at both expert and non-
expert of Matlab.

MIRtoolbox Objectives
Due to the context of development of this toolbox, we elaborated the following specifications:

G E N E R A L  F R A M E W O R K
MIRtoolbox proposes a large set of musical feature extractors.

M O D U L A R  F R A M E W O R K
MIRtoolbox is based on a set of building blocks that can be parametrized, reused, reordered, 
etc.

S I M P L E  A N D  A D A P T I V E  S Y N T A X
Users can focus on the general design, MIRtoolbox takes care of the underlying laborious tasks.

F R E E  S O F T W A R E ,  O P E N  S O U R C E
The idea is to propose to capitalize the expertise of the research community, and to offer it 
back to the community and the rest of us.

MIRtoolbox Features
MIRtoolbox includes around 50 audio and music features extractors and statistical descriptors. 
A brief overview of most of the features can be seen in the following figure.
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MIRtoolbox Reliances

R E Q U I R E D  C O M M E R C I A L  P R O D U C T S
MIRtoolbox requires the Matlab environment, version 7, and does not work very well with 
previous versions of Matlab. This is due in particular to the fact MIRtoolbox relies on multi-
dimensional arrays and multiple outputs, which seem to be features introduced by version 7.

MIRtoolbox also requires that the Signal Processing Toolbox, one of the optional sub-
packages of Matlab, be properly installed. But actually, a certain number of operators can adapt 
to the absence of this toolbox, and can produce more or less reliable results. But for serious use 
of MIRtoolbox, we strongly recommand a proper installation of the Signal Processing Toolbox.  

F R E E  S O F T W A R E S  I N C L U D E D  I N  T H E  M I R T O O L B O X  
D I S T R I B U T I O N
MIRtoolbox includes in its distribution several other freely available toolboxes, that are used 
for specific computations. 

• The Auditory Toolbox, by Malcolm Slaney (1998), is used for Mel-band spectrum and MFCC 
computations, and Gammatone filterbank decomposition. 

• The Netlab toolbox, by Ian Nabney (2002), where the routines for Gaussian Mixture Model-
ing (GMM) is used for classification (mirclassify).

• Finally, the SOM toolbox, by Esa Alhoniemi and colleagues (Vesanto, 1999), where only a 
routine for clustering based on k-means method is used, in the mircluster function.

C O D E  I N T E G R A T E D  A S  P A R T  O F  G P L  P R O J E C T
MIRtoolbox license is based on GPL 2.0. As such, it can integrate codes from other GPL 2.0 
projects, as long as their origins are explicitly stated.

• codes from the Music Analysis Toolbox by Elias Pampalk (2004), related to the computation of 
Terhardt outer ear modeling, Bark band decomposition and masking effects. (GPL 2.0)

• implementation of Earth Mover Distance written by Yossi Rubner and wrapped for Matlab 
by Simon Dixon.

• openbdf and readbdf script by T.S. Lorig to read BDF files, based on openedf and readedf by Al-
ois Schloegl.

C O D E  I N T E G R A T E D  W I T H  B S D  L I C E N S E

• mp3read for Matlab by Dan Ellis, which calls the mpg123 decoder and the mp3info scanner.
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• ai'ead for Matlab by Kenneth Eaton

Installation
To install MIRtoolbox in your Matlab environment, move the main MIRtoolbox folder to the 
location of your choice in your computer (for instance, in your Matlab "toolbox" folder, if you 
have administrative rights to modify it). Then open the “Set Path” environment available in 
Matlab File menu, click on “Add with Subfolders...”, browse into the file hierarchy and select the 
main MIRtoolbox folder, then click “Open”. You can then “Save” and “Close” the Set Path envi-
ronment.

WARNING: Because displaying MIRtoolbox objects in the Matlab Variable Editor produces a 
very annoying bug (with infinite number of window pop-ups...), we have decided to “hijack” 
somewhat the default Matlab Variable Editor behavior for untypical objects (such as ours).

If this modification of the default Matlab Variable Editor causes any problem to your Matlab 
environment, you can annul MIRtoolbox’ hijacking by simply removing the version of the file 
arrayviewfunc.m that is located in the MIRtoolbox folder.

U P D A T E
If you replace an older version of MIRtoolbox with a new one, please update your Matlab path 
using the following command:

rehash toolboxcache

Update also the class structure of the toolbox, either by restarting Matlab, or by typing the fol-
lowing command:

clear classes

M P 3  R E A D E R  F O R  M A C  O S  X  6 4 - B I T S  P L A T F O R M
If you are running Matlab on a Mac OS X 10.6 or beyond and with Matlab release 2009 or 
beyond, the binaries used for reading MP3 files (mpg123 and mp3info) needs to be in 64-bits 
format (with the mexmaci64 file extension). Unfortunately, it seems that the mpg123.mexmaci64 
and mp3info.mexmaci64 executable we provided in the MIRtoolbox distribution cannot be used 
directly on other computers, so you need to install those binaries by yourselves on each sepa-
rate computer by doing the following:

• Install Apple’s Xcode Developer Tools, after freely registering as an Apple Developer.

• Install MacPorts.
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• Check that your MacPorts is up-to-date by executing in the Terminal:

sudo port -v selfupdate

(You need to authenticate as an administrative user.)

• Install mpg123 and mp3info via MacPorts by executing in the Terminal:

sudo port insta! mpg123

sudo port insta! mp3info

(Each of these two installations might take some time.)

• Once both installations are completed, you should obtain among others two Unix executable 
files called mpg123 and mp3info, probably located at the address /opt/local/bin.

• Create a copy of these files that you rename mpg123.mexmaci64 and mp3info.mexmaci64, and 
place these two renamed files in a folder whose path is included in Matlab. You can for ins-
tance place them in your MIRtoolbox folder, which already contains Unix executable 
mpg123.mexmaci and mp3info.mexmaci, which correspond to the 32-bit platform. If there alrea-
dy exists files called mpg123.mexmaci64 and mp3info.mexmaci64, you can replace those previous 
files with the new ones you compiled yourself.
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Help and demos
To get an overview of the functions available in the toolbox, type:

help mirtoolbox

A short documentation for each function is available using the same help command. For ins-
tance, type:

help miraudio

D E M O S
Examples of use of the toolbox are shown in the MIRToolboxDemos folder:

• mirdemo

• demo1basics

• demo2timbre

• demo3tempo

• demo4segmentation

• demo5export

• demo6curves

• demo7tonality

• demo8classification

• demo9retrieval
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MIRtoolbox Interface

B A S I C  S Y N T A X
All functions are preceded by the mir- prefix in order to avoid conflicts with other Matlab 
functions. Each function is related to a particular data type: for instance, miraudio is related to 
the loading, transformation and display of audio waveform. An audio file, let’s say a WAV file 
of name mysong.wav, can be loaded simply by writing the command:

miraudio(‘mysong.wav’)

The extension of the file can be omitted:

miraudio(‘mysong’)

Operations and options to be applied are indicated by particular keywords, expressed as argu-
ments of the functions. For instance, the waveform can be centered using the ‘Center’ keyword:

miraudio(‘mysong’, ‘Center’)

which is equivalent to any of these parameters:

miraudio(‘mysong’, ‘Center’, ‘yes’)

miraudio(‘mysong’, ‘Center’, ‘on’)

miraudio(‘mysong’, ‘Center’, 1)

whereas the opposite set of parameters

miraudio(‘mysong’, ‘Center’, ‘no’)

miraudio(‘mysong’, ‘Center’, ‘off ’)

miraudio(‘mysong’, ‘Center’, 0)

are not necessary in the case of the ‘Center’ options as it is toggle off by default in miraudio.

It should be noted also that keywords are not case-sensitive:

miraudio(‘mysong’, ‘center’, ‘YES’)
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Other options accept numerical particular parameters. For instance, an audio waveform can be 
resampled to any sampling rate, which is indicated by a value in Hertz (Hz.) indicated after the 
‘Sampling’ keyword. For instance, to resample at 11025 Hz., we just write:

miraudio(‘mysong’, ‘Sampling’, 11025)

Finally the different options can be combined in one single command line:

miraudio(‘mysong’, ‘Center’, ‘Sampling’, 11025)

B A T C H  A N A L Y S I S
Folder of files can be analyzed in exactly the same way. For that, the file name, which was ini-
tially the first argument of the functions, can be replaced by the ‘Folder’ keyword. For in-
stance, a folder of audio files can be loaded like this:

miraudio(‘Folder’)

Only audio files in the WAV and AU formats are taken into consideration, the other files are 
simply ignored:

song1.wav

miraudio(‘Folder’)song2.wav

song3.au

non_audio.file

Current Directory:

Automatic analysis of a batch of audio files using the ‘Folder’ keyword

Subfolders can be analyzed recursively as well, using the ‘Folders’ keyword:

miraudio(‘Folders’)

Alternatively, the list of audio files (with their respective path) can be stored in successive lines 
of a TXT file, whose name (and path) can be given as input to miraudio: 

miraudio(‘myfilenames.txt’)

O U T P U T  F O R M A T
After entering one command, such as
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miraudio(‘mysong’)

the computation is carried out, and when it is completed, a text is written in the Command 
Window:

ans is the Audio waveform related to file mysong.wav, of sampling 
rate 44100 Hz.

Its content is displayed in Figure 1.

And a graphical representation of the result is displayed in a figure:

Display of a miraudio object

The display of the figures and the messages can be avoided, if necessary, by adding a semi-colon 
at the end of the command:

miraudio(‘mysong’);

The actual output is stored in an object, hidden by default to the users, which contains all the 
information related to the data, such as the numerical values of the waveform amplitudes, the 
temporal dates of the bins, the sampling rate, the name of the file, etc. In this way we avoid the 
traditional interface in Matlab, not quite user-friendly in this respect, were results are directly 
displayed in the Command Window by a huge list of numbers.
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WARNING: It is not possible to display MIRtoolbox results in the Matlab Variable Editor.

M U L T I P L E  F I L E  O U T P U T
If we now analyze a folder of file:

miraudio(‘Folder’)

the results related to each audio file is displayed in a different figure, and messages such as the 
following ones are displayed in the Command Window:

ans(1) is the Audio waveform related to file song1.wav, of sampling 
rate 44100 Hz.

Its content is displayed in Figure 1.

ans(2) is the Audio waveform related to file song2.wav, of sampling 
rate 22050 Hz.

Its content is displayed in Figure 2.

ans(3) is the Audio waveform related to file song3.au, of sampling 
rate 11025 Hz.

Its content is displayed in Figure 3. 

and so on.

And the actual output is stored in one single object, that contains the information related to all 
the different audio files.

T H R E A D I N G  O F  D A T A  F L O W
The result of one operation can be used for subsequent operations. For that purpose, it is bet-
ter to store each result in a variable. For instance, the audio waveform(s) can be stored in one 
variable a:

a = miraudio(‘mysong’);

WARNING: It is not possible to display MIRtoolbox results in the Matlab Variable Editor.

Then the spectrum, for instance, related to the audio waveform can be computed by calling 
the function mirspectrum using simply the a variable as argument:

s = mirspectrum(a)
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In this way, all the information necessary for the computation of the spectrum can be retrieved 
from the hidden object, associated to the variable a, that contains the complex encapsulated 
data.

Alternatively, the spectrum can be directly computed from a given audio file by indicating the 
file name as argument of the mirspectrum function:

s = mirspectrum(‘mysong’)

This second syntax, more compact, is generally recommended, because it avoids the decompo-
sition of the computation in several steps (a, then s, etc.), which might cause significant prob-
lems for long audio files or for folder of files. We will see in section 5.3 how to devise more sub-
tle datacharts that take into account memory management problems in a more efficient way.

S U C C E S S I V E  O P E R A T I O N S  O N  O N E  S A M E  D A T A  F O R M A T
When some data has been computed on a given format, let’s say an audio waveform using the 
miraudio function:

a = miraudio(‘mysong’);

it is possible to apply options related to that format in successive step. For instance, we can 
center the audio waveform in a second step:

a = miraudio(a, ‘Center’);

which could more efficiently be written in one single line:

a = miraudio(‘mysong’, ‘Center’);

N U M E R I C A L  D A T A  R E C U P E R A T I O N
The numerical data encapsulated in the output objects can be recuperated if necessary. In par-
ticular, the main numerical data (such as the amplitudes of the audio waveform) are obtained 
using the mirgetdata command:

mirgetdata(a)

the other related informations are obtained using the generic get method. For instance, the 
sampling rate of the waveform a is obtained using the command:

get(a, ‘Sampling’)
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More detailed description of these functions will be described in section 5, dedicated to ad-
vance uses of MIRtoolbox.
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2.  BASIC OPERATORS
MIRtoolbox basic operators concern the management of audio waveforms (miraudio, mirsave), 
frame-based analysis (mir-ame, mirflux), periodicity estimation (mirautocor, mirspectrum, mir-
cepstrum), operations related more or less to auditory modeling (mirenvelope, mirfilterbank), 
peak picking (mirpeaks) and sonification of the results (mirplay).

miraudio

A U D I O  W A V E F O R M
As explained previously, this operator basically loads audio files, displays and performs opera-
tions on the waveform.

A C C E P T E D  I N P U T  F O R M A T S

• file name: The accepted file formats are WAV, MP3, AIFF and AU formats, as the loading 
operations are based on the Matlab wavread and auread functions, on Dan Ellis’ mp3read and 
on Kenneth Eaton’s ai'ead. 

• miraudio object: for further transformations.

• Matlab array: It is possible to import an audio waveform encoded into a Matlab column 
vector, by using the following syntax:

miraudio(v, sr)

where v is a column vector and sr is the sampling rate of the signal, in Hz. The default value 
for sr  is 44100 Hz.

T R A N S F O R M A T I O N  O P T I O N S
• miraudio(..., ‘Mono’, 0) does not perform the default summing of channels into one single 

mono track, but instead stores each channel of the initial sound file separately.

• miraudio(..., ‘Center’) centers the waveform.

• miraudio(..., ‘Sampling’, r) resamples at sampling rate r (in Hz). It uses the resample function 
from Signal Processing Toolbox.

• miraudio(..., ‘Normal’) normalizes with respect to RMS energy (cf. mirrms).
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• miraudio(..., ‘Frame’, w, wu, h, hu) decomposes into frames. Cf. mir-ame for an explanation 
of the arguments (units can be omitted here as well). Default parameters: same as in mir-
-ame, i.e., 50 ms and half-overlapping.

E X T R A C T I O N  O P T I O N S

• miraudio(..., ‘Extract’, t1, t2, u,f) extracts the signal between the dates t1 and t2, expressed in 
the unit u.

• Possible units u = ‘s’ (seconds, by default) or u = ‘sp’ (sample index, starting from 1).

• The additional optional argument f indicates the referential origin of the temporal posi-
tions. Possible values for f:

• 'Start’ (by default),

• 'Middle’ (of the sequence),

• 'End’ of the sequence.

When using 'Middle’ or 'End’, negative values for t1 or t2 indicate values before the middle or 
the end of the audio sequence. For instance: miraudio(..., ‘Extract’, -1, +1, ‘Middle’) extracts one 
second before and after the middle of the audio file.

• Alternative keyword: ‘Excerpt’.

• miraudio(..., ‘Trim’) trims the pseudo-silence beginning and end off the audio file.

• miraudio(..., ‘TrimThreshold’, t) specifies the trimming threshold t. Silent frames are 
frames with RMS energy below t times the medium RMS of the whole audio file. Default 
value: t = 0.06.

• Instead of 'Trim’, 'TrimStart’ only trims the beginning of the audio file, whereas 'Tri-
mEnd’ only trims the end.

• miraudio(..., ‘Channel’, c) or miraudio(.., ‘Channels’, c) selects the channels indicated by the (ar-
ray of) integer(s) c.

L A B E L I N G  O P T I O N
miraudio(..., ‘Label’, lb) labels the audio signals following the name of their respective audio 
files. lb is one number, or an array of numbers, and the audio signals are labelled using the sub-
string of their respective file name of  index lb. If lb =0, the audio signal(s) are labelled using the 
whole file name.

miraudio(‘Folder’, ‘Label’, lb) song1g.wav song2g.wav song3b.au
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lb = 6 ‘g’ ‘g’ ‘b’
lb = [5 6] ‘1g’ ‘2g’ ‘3b’

lb = {‘good’, ‘bad’} ‘good’ ‘bad’ ‘good’

Example of labe!ing of a folder of audio files

The labeling is used for classification purposes (cf. mirclassify and mirexport).

S U M M A T I O N
Audio signals can be superposed using the basic Matlab summation operators (+). For instance 
let’s say we have two sequences:

a1= miraudio(‘melody.wav’);

a2= miraudio(‘accompaniment.wav’);

Then the two sequences can be superposed using the command:

a = a1+a2

When superposing miraudio objects, the longest audio are no more truncated, but on the con-
trary the shortest one are prolonged by silence. When audio have different sampling rates, all 
are converted to the highest one.

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Time’: the temporal positions of samples (same as ‘Pos’),

• ‘Centered’: whether the waveform has been centered (1) or not (0),

• ‘NBits’: the number of bits used to code each sample,

• ‘Label’: the label associated to each audio file.

 

MIRtoolbox 1.3.2 User’s Manual" 22



mirframe

F R A M E  D E C O M P O S I T I O N
The analysis of a whole temporal signal (such as an audio waveform in particular) leads to a 
global description of the average value of the feature under study. In order to take into account 
the dynamic evolution of the feature, the analysis has to be carried out on a short-term window 
that moves chronologically along the temporal signal. Each position of the window is called a 
frame.

F L O W C H A R T  I N T E R C O N N E C T I O N S
mir-ame accepts as input any temporal object:

• an audio waveform miraudio,

• file name or the ‘Folder’ keyword,

• an envelope mirenvelope,

• the temporal evolution of a scalar data, such as fluxes in particular (mirflux),

• in particular, onset detection curves (mironsets) can be decomposed into frames as well.

S Y N T A X
The frame decomposition can be performed using the mir-ame command. The frames can be 
specified as follows:

mir-ame(x,..., ‘Length', w, wu):

• w is the length of the window in seconds (default: .05 seconds);

• u is the unit, either

• ‘s’ (seconds, default unit),

• or ‘sp’ (number of samples).

mir-ame(x,'..., ‘Hop', h, hu):

• h is the hop factor, or distance between successive frames (default: half overlapping: each 
frame begins at the middle of the previous frame)

• u is the unit, either 
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• ‘/1’ (ratio with respect to the frame length, default unit)

• ‘%’ (ratio as percentage)

• ‘s’ (seconds)

• or ‘sp’ (number of samples)

Frame decomposition of an audio waveform, with -ane length l and hop factor h (represented here, fo!ow-
ing the default unit, as a ratio with respect to the -ame length).

These arguments can also be written as follows (where units can be omitted):

mir-ame(x, w, wu, h, hu)

C H A I N I N G  O F  O P E R A T I O N S
Suppose we load an audio file:

a = miraudio(‘mysong’)

then we decompose into frames

f = mir-ame(a)

then we can perform any computation on each of the successive frame easily. For instance, the 
computation of the spectrum in each frame (or spectrogram), can be written as:

s = mirspectrum(f)

T H E  ‘ F R A M E ’  O P T I O N
The two first previous commands can be condensed into one line, using the ‘Frame’ option.

mirframe
frame decomposition
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f = miraudio(‘mysong’, ‘Frame’)

and the three commands can be condensed into one line also using the ‘Frame’ option.

s = mirspectrum(‘mysong’, ‘Frame’)

The frame specifications can be expressed in the following way:

mirspectrum(..., ‘Frame’, l, ‘s’, h, ‘/1’)

This ‘Frame’ option is available to most operators. Each operator uses specific default values 
for the ‘Frame’ parameters. Each operator can perform the frame decomposition where it is 
most suitable. For instance, as can be seen in mironsets feature map, the ‘Frame’ option related 
to the mironsets operator will lead to a frame decomposition after the actual computation of the 
onset detection curve (produced by mironsets).

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields: 

• ‘FramePos’: the starting and ending temporal positions of each successive frame,

• ‘Framed’: whether the data has been decomposed into frames or not,
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mirfilterbank

F I L T E R B A N K  D E C O M P O S I T I O N
It is often interesting to decompose the audio signal into a series of audio signals of different 
frequency register, from low frequency channels to high frequency channels. This enables thus 
to study each of these channels separately. The decomposition is performed by a bank of fil-
ters, each one selecting a particular range of frequency values. This transformation models an 
actual process of human perception, corresponding to the distribution of frequencies into 
critical bands in the cochlea.

miraudio

filter N

filter 2
filter 1

...

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio

mirfilterbank accepts as input data type either:

• miraudio objects, where the audio waveform can be segmented (using mirsegment),

• file name or the ‘Folder’ keyword.

F I L T E R B A N K  S E L E C T I O N
Two basic types of filterbanks are proposed in MIRtoolbox:

• mirfilterbank(..., ‘Gammatone’) carries out a Gammatone filterbank decomposition (Patter-
son et al, 1992). It is known to simulate well the response of the basilar membrane. It is based 
on a Equivalent Rectangular Bandwidth (ERB) filterbank, meaning that the width of each 
band is determined by a particular psychoacoustical law. For Gammatone filterbanks, mirfil-
terbank calls the Auditory Toolbox routines MakeERBFilters and ERBfilterbank. This is the de-
fault choice when calling mirfilterbank.
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MakeERBFilters

24

MakeERBFilters

Purpose
Design the filters needed to implement an ERB cochlear model.

Synopsis
fcoefs = MakeERBFilters(fs,numChannels,lowFreq)

Description
This function computes the filter coefficients for a bank of Gammatone filters.  These 
filters were defined by Patterson and Holdworth for simulating the cochlea.  

The result is returned as an array of filter coefficients.  Each row of the filter arrays 
contains the coefficients for four second order filters.  The transfer function for these 
four filters share the same denominator (poles) but have different numerators (zeros).  
All of these coefficients are assembled into one vector that the ERBFilterBank func-
tion can take apart to implement the filter.

The filter bank contains numChannels channels that extend from half the sampling 
rate (fs) to lowFreq.

Note this implementation fixes a problem in the original code. The original version 
calculated a single eighth-order polynomial representing the entire filter function. 
This new version computes four separate second order filters.  This avoids a problem 
with round off errors in cases with very small characteristic frequencies (<100Hz) 
and large sample rates (>44kHz).  The problem is caused by roundoff error when a 
number of poles are combined, all very close to the unit circle.  Small errors in the 
eighth-order coefficient, are magnified when the eighth root is taken to give the pole 
location.  These small errors lead to poles outside the unit circle and instability.  
Thanks to Julius Smith for pointer me to the proper explanation.

Examples
The ten ERB filters between 100 and 8000Hz are computed using

»fcoefs = MakeERBFilters(16000,10,100);

The resulting frequency response is given by
»y = ERBFilterBank([1 zeros(1,511)], fcoefs);

»resp = 20*log10(abs(fft(y')));

»freqScale = (0:511)/512*16000;

»semilogx(freqScale(1:255),resp(1:255,:));

»axis([100 16000 -60 0])

»xlabel('Frequency (Hz)'); 

»ylabel('Filter Response (dB)');

A simple cochlear model can be formed by filtering an utterance with these filters. To 
convert this data into an image we pass each row of the cochleagram through a half-
wave-rectifier, a low-pass filter, and then decimate by a factor of 100. A cochleagram 
of the ‘A huge tapestry hung in her hallway’ utterance from the TIMIT database 

10
2

10
3

10
4

-60

-40

-20

0

Ten ERB filters between 100 and 8000Hz (Slaney, 1998)

• mirfilterbank(...,'Lowest', f) indicates the lowest frequency f, in Hz. Default value: 50 Hz.

• mirfilterbank(..., ‘2Channels’) performs a computational simplification of the filterbank using 
just two channels, one for low-frequencies, below 1000 Hz, and one for high-frequencies, 
over 1000 Hz (Tolonen and Karjalainen, 2000). On the high-frequency channel is performed 
an envelope extraction using a half-wave rectification and the same low-pass filter used for 
the low-frequency channel. This filterbank is mainly used for multi-pitch extraction (cf. mir-
pitch).

miraudio

Low-pass
filter

70-1000 Hz

High-pass
filter

1000-10000 Hz
HWR

Low-pass
filter

70-1000 Hz

Diagram of the two-channel filterbank proposed in (Tolonen and Karjalainen, 2000)

For these general type of filterbanks are chosen, further options are available:

• mirfilterbank(...,'NbChannels', N) specifies the number of channels in the bank. By default: N 
= 10. This option is useless for ‘2Channels’. 

• mirfilterbank(..., ‘Channel’, c) – or mirfilterbank(..., ‘Channels’,c) – only output the channels 
whose ranks are indicated in the array c. (default: c = (1:N))

M A N U A L  S P E C I F I C A T I O N S
mirfilterbank(...,'Manual', f) specifies a set of non-overlapping low-pass, band-pass and high-
pass eliptic filters (Scheirer, 1998).  The series of cut-off frequencies f as to be specified as next 
parameter.
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• If this series of frequencies begins with -Inf, the first filter is low-pass.

• If this series of frequencies ends with Inf, the last filter is high-pass.

mirfilterbank(...,'Order', o) specifies the order of the filters. The default is set to o = 4 (Scheirer, 
1998)

mirfilterbank(...,'Hop', h) specifies the degree of spectral overlapping between successive chan-
nels.

• If h = 1 (default value), the filters are non-overlapping.

• If h = 2, the filters are half-overlapping.

• If h = 3, the spectral hop factor between successive filters is a third of the whole frequency 
region, etc.

P R E S E L E C T E D  F I L T E R B A N K S
mirfilterbank(..., p) specifies predefined filterbanks, all implemented using elliptic filters, by de-
fault of order 4:

• p = ‘Mel’: Mel scale (cf. mirspectrum(..., ‘Mel’)).

• p = ‘Bark’: Bark scale (cf. mirspectrum(..., ‘Bark’)).

• p = ‘Scheirer’ proposed in (Scheirer, 1998) corresponds to 'Manual',[-Inf 200 400 800 1600 3200 
Inf]

• p = ‘Klapuri’ proposed in (Klapuri, 1999) corresponds to 'Manual',44*[2.^ ([ 0:2, ( 9+(0:17) )/3 ]) ]

E X A M P L E
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mirfilterbank(‘ragtime’)

If the number of channels exceeds 20, the audio waveform decomposition is represented as a 
single image bitmap, where each line of pixel represents each successive channel:

mirfilterbank(‘ragtime’, ‘NbChannels’, 40)
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mirenvelope

A M P L I T U D E  E N V E L O P E
From an audio waveform can be computed the envelope, which shows the global outer shape 
of the signal. It is particularly useful in order to show the long term evolution of the signal, and 
has application in particular to the detection of musical events such as notes.

Here is an example of audio file with its envelope:
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Corresponding envelope of the ragtime excerpt

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirenvelope
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mirenvelope accepts as input data type either:

• miraudio objects, where the audio waveform can be segmented (using mirsegment) and/or 
decomposed into channels (using mirfilterbank),

• file name or the ‘Folder’ keyword.

Besides, mirenvelope(..., ‘Frame’, ...) directly performs a frame decomposition on the resulting 
envelope1. Default value: window length of 50 ms and half overlapping.

P A R A M E T E R S  S P E C I F I C A T I O N
The envelope extraction is based on two alternate strategies: either based on a filtering of the 
signal (‘Filter’ option), or on a decomposition into frames via a spectrogram computation 
(‘Spectro’ option). Each of these strategies accepts particular options:

• mirenvelope(...,‘Filter’) extract the envelope through a filtering of the signal.

• First the signal can be converted from the real domain to the complex domain using a 
Hilbert transform. In this way the envelope is estimated in a three-dimensional space de-
fined by the product of the complex domain and the temporal axis. Indeed in this repre-
sentation the signal looks like a “spring” of varying width, and the envelope would corre-
spond to that varying width. In the real domain, on the other hand, the constant crossing 
of the signal with the zero axis may sometime give erroneous results.

An Hilbert transform can be performed in mirenvelope, based on the Matlab function hil-
bert. In order to toggle on the Hilbert transform, the following keyword should be 
added:

mirenvelope(..., ‘Hilbert’)

Beware however that, although sometimes the use of the Hilbert transform seems to im-
prove somewhat the results, and might in particular show clearer burst of energy, we no-
ticed some problematic behavior, in particular at the beginning and the end of the signal, 
and after some particular bursts of energy. This becomes all the more problematic when 
chunk decompositions are used (cf. §5.3), since the continuity between chunk cannot be 
ensured any more. For that reason, since version 1.1 of MIRtoolbox, the use of Hilbert 
transform is toggled off by default.
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If the signal is in the real domain, the next step consists in a full-wave rectification, re-
flecting all the negative lobes of the signal into the positive domain, leading to a series of  
positive half-wave lobes. The further smoothing of the signal (in the next step) will leads 
to an estimation of the envelope. If on the contrary the signal is in the complex domain, 
a direct estimation of the envelope can be obtained by computing the modulus, i.e., the 
width of the “string”. These two operations, either from the real or the complex domains, 
although apparently different, relate to the same Matlab command abs.

• mirenvelope(..., ‘PreDecim’, N) down-samples by a factor N>1, where N is an integer, be-
fore the low-pass filtering (Klapuri, 1999). Default value: N = 1, corresponding to no 
down-sampling.

• The next step consists in a low-pass filter than retain from the signal only the long-term 
evolution, by removing all the more rapid oscillations. This is performed through a filter-
ing of the signal. Two types of filters are available, either a simple autoregressive coeffi-
cient, with Infinite Impulse Response (‘IIR’ value in ‘FilterType’ option), or a half-
Hanning (raised cosine) filter (‘HalfHann’ value in ‘FilterType’ option).

• mirenvelope(..., ‘FilterType’, ‘IIR’) extract the envelope using an auto-regressive filter 
of infinite impulse response (IIR):

Detail of the envelope extraction process

The range of frequencies to be filtered can be controlled by selecting a proper value 
for the a parameter. Another way of expressing this parameter is by considering its 
time constant. If we feed the filter with a step function (i.e. 0 before time 0, and 1 af-
ter time 0), the time constant will correspond to the time it will take for the output to 
reach 63 % of the input. Hence higher time constant means smoother filtering. The 
default time constant is set to .02 seconds and can be changed using the option:

mirenvelope(..., ‘Tau’, t)

Remarks:

• mirenvelope(..., ‘Hilbert’, ‘on’)

• mirenvelope(..., ‘Tau’, .02): LPF time constant (in s.)

LPF is zero-phased (using filtfilt from Signal Processing Toolbox) 

• mirenvelope(..., ‘Down’, N)   N=16

Tzanetakis, Essl, Cook. Automatic Musical Genre Classification Of Audio Signals, ISMIR 2001.

Low-Pass
Filter

+ 1-a

a

z  

Down-
Sampling

  N

Full-wave 
rectification

abs
Analytic
signal

Hilbert
Magnitude -1

mirenvelope
envelope extraction

 

MIRtoolbox 1.3.2 User’s Manual" 32



1. As low-pass filters actually lead to a shifting of the phases of the signal. This is coun-
teracted using a second filtering of the reverse signal. The time constant t is the time 
constant of each separate filter, therefore the resulting time constant is around twice bi5er. 

2. The reverse filtering is not performed using Matlab filtfilt function since version 1.1 
of MIRtoolbox – because this would not work in the case of chunk decomposition (cf. 
§5.3) – but has been partly re-implemented. In particular, contrary to filtfilt, care is 
not yet taken to minimize startup and ending transients by matching initial condi-
tions.

• Once the signal has been smoothed, as there is a lot of redundancy between the succes-
sive samples, the signal can be down-sampled. The default parameter related to down-
sampling is the down-sampling rate N, i.e. the integer ratio between the old and the new 
sampling rate. N  is set by default to 16, and can be changed using the option:

 mirenvelope(..., ‘PostDecim’, N)

) Alternatively, any sampling rate r (in Hz) can be specified using the post-processing op-
tion ‘Sampling’.

• mirenvelope(..., ‘Trim’): trims the initial ascending phase of the curves related to the tran-
sitory state.

• mirenvelope(..., ‘Spectro’) extracts the envelope through the computation of a power spectro-
gram, with frame size 100 ms, hop factor 10% and the use of Hanning windowing:

mirspectrum(..., ‘Frame’, .1, ‘s’, .1, ‘/1’, ‘Window’, ‘hanning’, ‘Power’, b)

• mirenvelope(..., b) specifies whether the frequency range is further decomposed into bands 
(cf. mirspectrum). Possible values:

• b = ‘Freq’: no band decomposition (default value),

• b = ‘Mel’: Mel-band decomposition,

• b = ‘Bark’: Bark-band decomposition,

• b = ‘Cents’: decompositions into cents.

• mirenvelope(..., ‘Frame’,...) modifies the default frame configuration.

• mirenvelope(..., ‘UpSample’, N) upsamples by a factor N>1, where N is an integer. Default 
value if ‘UpSample’ called: N = 2
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• mirenvelope(..., ‘Complex’) toggles on the ‘Complex’ method for the spectral flux compu-
tation (cf. mirflux).

P O S T - P R O C E S S I N G  O P T I O N S
Different operations can be performed on the envelope curve:

• mirenvelope(...,‘Sampling’, r) resamples to rate r (in Hz). ‘PostDecim’ and ‘Sampling’ op-
tions cannot therefore be combined.

• mirenvelope(...,‘Halfwave’) performs a half-wave rectification on the envelope.

• mirenvelope(...,‘Center’) centers the extracted envelope.
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• mirenvelope(...,‘HalfwaveCenter’) performs a half-wave rectification on the centered enve-
lope.

! !"# $ $"# % %"# & &"# ' '"#
!

!"!$

!"!%
()*+,-.+/012,3!42*+/5+67838+9:

78;+/0<:

2
;
.
,87
=
9
+

• mirenvelope(...,‘Log’) computes the common logarithm (base 10) of the envelope.

• mirenvelope(...,‘Mu’, mu) computes the logarithm of the envelope, before the eventual differen-
tiation, using a mu-law compression (Klapuri et al., 2006). Default value for mu: 100

• mirenvelope(...,‘Power’) computes the power (square) of the envelope.

• mirenvelope(...,‘Diff’) computes the differentiation of the envelope, i.e., the differences be-
tween successive samples.
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• mirenvelope(...,‘HalfwaveDiff’) performs a half-wave rectification on the differentiated enve-
lope.
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• mirenvelope(...,‘Normal’) normalizes the values of the envelope by fixing the maximum value 
to 1.

• mirenvelope(...,‘Lambda’, l) sums the half-wave rectified envelope with the non-differentiated 
envelope, using the respective weight 0<l<1 and (1-l). (Klapuri et al., 2006).

• mirenvelope(...,‘Smooth’,o) smooths the envelope using a movering average of order o. The de-
fault value when the option is toggled on: o=30

• mirenvelope(...,‘Gauss’,o) smooths the envelope using a gaussian of standard deviation o sam-
ples. The default value when the option is toggled on: o=30

P R E S E L E C T E D  M O D E L

Complete (or nearly complete) model is available:

• mirenvelope(..., ‘Klapuri06’) follows the model proposed in (Klapuri et al., 2006). Il corre-
sponds to

 e = mirenvelope(..., ‘Spectro’, ‘UpSample’, ‘Mu’, ‘HalfwaveDiff ’, ‘Lambda’, .8);

mirsum(e, ‘Adjacent’, 10)

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Time’: the temporal positions of samples (same as ‘Pos’),

• ‘DownSampling’: the value of the ‘PostDecim’ option,

• ‘Halfwave’: whether the envelope has been half-wave rectified (1) or not (0),

• ‘Diff’: whether the envelope has been differentiated (1) or not (0),

• ‘Centered’: whether the envelope is centered (1) or not (0),
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• ‘Phase’: the phase of the spectrogram, if necessary.
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mirspectrum

F O U R I E R  T R A N S F O R M
A decomposition of the energy of a signal (be it an audio waveform, or an envelope, etc.) along 
frequencies can be performed using a Discrete Fourier Transform, which, for an audio signal x 
has for equation:

 

This decomposition is performed using a Fast Fourier Transform by the mirspectrum function 
by calling Matlab fft function. The graph returned by the function highlights the repartition of 
the amplitude of the frequencies (i.e., the modulus of Xk for all k), such as the following:
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We can also obtain for each frequency the actual phase position (i.e., the phase of Xk), which 
indicates the exact position of each frequency component at the instant t = 0. If the result of 
the spectrum decomposition is s, the phase spectrum is obtained by using the command:

get(s, ‘Phase’)

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirspectrum

mironsets

mirframe

mirspectrum

mirspectrum accepts as input data type either:
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• miraudio objects, where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of 50 ms and half overlapping);

• file name or the ‘Folder’ keyword;

• data in the onset detection curve category (cf. mironsets):

• mirenvelope objects, frame-decomposed or not,

• fluxes (cf. mirflux), frame-decomposed or not;

• mirspectrum frame-decomposed objects: by calling again mirspectrum with the ‘Along-
Bands’ option, Fourier transforms are computed this time on each temporal signal related to 
each separate frequency bin (or frequency band, cf. below).

P A R A M E T E R S  S P E C I F I C A T I O N
The range of frequencies, in Hz, can be specified by the options:

• mirspectrum(..., ‘Min’, mi) indicates the lowest frequency taken into consideration, expressed 
in Hz. Default value: 0 Hz.

• mirspectrum(..., ‘Max’, ma) indicates the highest frequency taken into consideration, expressed 
in Hz. Default value: the maximal possible frequency, corresponding to the sampling rate di-
vided by 2.

• mirspectrum(..., ‘Window’, w) specifies the windowing method. Windows are used to avoid 
the problems due to the discontinuities provoked by finite signals. Indeed, an audio sequence 
is not infinite, and the application of the Fourier Transform requires to replace the infinite 
time before and after the sequence by zeroes, leading to possible discontinuities at the bor-
ders. Windows are used to counteract those discontinuities. Possible values for w are either 
w = 0 (no windowing) or any windowing function proposed in the Signal Processing Toolbox2. 
Default value: w = ‘hamming’, the Hamming window being a particular good window for Fou-
rier Transform.

• mirspectrum(..., ‘NormalInput’) normalizes the waveform between 0 and 1 before computing 
the Fourier Transform.

• mirspectrum(..., ‘Phase’, ‘No’) does not compute the related FFT phase. The FFT phase is not 
computed anyway whenever another option that will make the phase information irrelevant 
(such as ‘Log’, ‘dB’, etc.) is specified.
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R E S O L U T I O N  S P E C I F I C A T I O N
The frequency resolution of the spectrum directly depends on the size of the audio waveform: 
the longer the waveform, the better the frequency resolution. It is possible, however, to in-
crease the frequency resolution of a given audio waveform by simply adding a series of zeros at 
the end of the sequence, which is called zero-padding. Besides, an optimized version of the Dis-
crete Fourier Transform, called Fast Fourier Transform (FFT) can be performed if the length of 
the audio waveform (including the zero-padding) is a power of 2. For this reason, by default, a 
zero-padding is performed by default in order to ensure that the length of the audio waveform 
is a power of 2. But these operations can be tuned individually:

• mirspectrum(...,‘MinRes’, mr) adds a constraint related to the a minimal frequency resolution, 
fixed to the value mr (in Hz). The audio waveform is automatically zero-padded to the lowest 
power of 2 ensuring the required frequency resolution.

• mirspectrum(..., ‘MinRes’, r, ‘ OctaveRatio’, tol): Indicates the minimal accepted resolution in 
terms of number of divisions of the octave. Low frequencies are ignored in order to reach the 
desired resolution. The corresponding required frequency resolution is equal to the differ-
ence between the first frequency bins, multiplied by the constraining multiplicative factor tol 
(set by default to .75).

• mirspectrum(...,‘Res’, r) specifies the frequency resolution r (in Hz) that will be secured as 
closely as possible, through an automated zero-padding. The length of the resulting audio 
waveform will not necessarily be a power of 2, therefore the FFT routine will rarely be used.

• mirspectrum(...,‘Length’, l) specifies the length of the audio waveform after zero-padding. If 
the length is not a power of 2, the FFT routine will not be used.

• mirspectrum(...,‘ZeroPad’, s) performs a zero-padding of s samples. If the total length is not a 
power of 2, the FFT routine will not be used.

• mirspectrum(...,‘WarningRes’, mr) indicates a required frequency resolution, in Hz, for the 
input signal. If the resolution does not reach that prerequisite, a warning is displayed.

Alternatively, the spectrum decomposition can be performed through a Constant Q Transform 
instead of a FFT, which enables to express the frequency resolution as a constant number of 
bins per octave:

• mirspectrum(...,‘ConstantQ’, nb) fixes the number of bins per octave to nb. Default value when 
the ‘ConstantQ’ option is toggled on: nb=12 bins per octave.

Please note however that the Constant Q Transform is implemented as a Matlab M file, 
whereas Matlab’s FFT algorithm is optimized, therefore faster.
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P O S T - P R O C E S S I N G  O P T I O N S

• mirspectrum(...,‘Terhardt’) modulates the energy following (Terhardt, 1979) outer ear model. 
The function is mainly characterized by an attenuation in the lower and higher registers of 
the spectrum, and an emphasis around 2–5 KHz, where much of the speech information is 
carried. (Code based on Pampalk's MA toolbox). 

• mirspectrum(..., ‘Normal’) normalizes with respect to energy: each magnitude is divided by the 
euclidian norm (root sum of the squared magnitude). 

• mirspectrum(...,‘Power’) squares the energy: each magnitude is squared.

• mirspectrum(..., ‘dB’) represents the spectrum energy in decibel scale. For the previous exam-
ple we obtain the following spectrum:
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• mirspectrum(..., 'dB', th) keeps only the highest energy over a range of th dB. For example if we 
take only the 20 most highest dB in the previous example we obtain:
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• mirspectrum(...,‘Resonance’, r) multiplies the spectrum curve with a resonance curve that em-
phasizes pulsations that are more easily perceived. Two resonance curves are available:

• r  = ‘ToiviainenSnyder’ (Toiviainen & Snyder 2003), default choice, used for onset detec-
tion (cf. mirtempo),

• r = ‘Fluctuation’: fluctuation strength (Fastl 1982), default choice for frame-decomposed 
mirspectrum objects redecomposed in ‘Mel’ bands (cf. mirfluctuation).

• mirspectrum(...,‘Smooth’, o) smooths the envelope using a movering average of order o. Default 
value when the option is toggled on: o=10
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• mirspectrum(...,‘Gauss’, o) smooths the envelope using a gaussian of standard deviation o sam-
ples. Default value when the option is toggled on: o=10

F R E Q U E N C Y  R E D I S T R I B U T I O N
• mirspectrum(..., ‘Cents’) redistributes the frequencies along cents. Each octave is decomposed 

into 1200 bins equally distant in the logarithmic representation. The frequency axis is hence 
expressed in MIDI-cents unit: to each pitch of the equal temperament is associated the cor-
responding MIDI pitch standard value multiply by 100 (69*100=6900 for A4=440Hz, 
70*100=7000 for B4, etc.).

mirspectrum(‘ragtime’,‘Cents’)

It has to be noticed that this decomposition requires a frequency resolution that gets higher 
for lower frequencies: a cent-distribution starting from infinitely low frequency (near 0 Hz 
would require an infinite frequency resolution). Hence by default, the cent-decomposition is 
defined only for the frequency range suitable for the frequency resolution initially associated to 
the given spectrum representation. Two levers are available here:

• If a minimal frequency range for the spectrum representation has been set (using the ‘Min’ 
parameter), the frequency resolution of the spectrum is automatically set in order to 
meet that particular requirement.

mirspectrum(‘ragtime’,’Cents’,’Min’,100)

• By increasing the frequency resolution of the spectrum (for instance by using the ‘Res’ or 
‘MinRes’ parameters), the frequency range will be increased accordingly.

• mirspectrum(..., ‘Collapsed’) collapses the cent-spectrum into one octave. In the resulting 
spectrum, the abscissa contains in total 1200 bins, representing the 1200 cents of one octave, 
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and each bin contains the energy related to one position of one octave and of all the multiple 
of this octave.

mirspectrum(‘ragtime’,’Cents’,’Min’,100,‘Co!apsed’)

• mirspectrum(..., ‘Mel’) redistributes the frequencies along Mel bands. The Mel-scale of audi-
tory pitch was established on the basis of listening experiments with simple tones (Stevens 
and Volkman, 1940). The Mel scale is now mainly used for the reason of its historical priority 
only. It is closely related to the Bark scale. It requires the Auditory Toolbox.

• mirspectrum(..., ‘Bands’, b) specifies the number of band in the decomposition. By default b 
= 40.

In our example we obtain the following:
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The Mel-scale transformation requires a sufficient frequency resolution of the spectrum: as the 
lower bands are separated with a distance of 66 Hz, the frequency resolution should be higher 
than 66 Hz in order to ensure that each Mel band can be associated with at least one frequen-
cy bin of the spectrum. If the ‘Mel’ option is performed in the same mirspectrum command that 
performs the actual FFT, then the minimal frequency resolution is implicitly ensured, by for-
cing the minimal frequency resolution (‘MinRes’ parameter) to be equal or below 66 Hz. If on 
the contrary the ‘Mel’ is performed in a second step, and if the frequency resolution is worse 
than 66 Hz, then a warning message is displayed in the Command Window.

• mirspectrum(..., ‘Bark’) redistributes the frequencies along critical band rates (in Bark). Meas-
urement of the classical "critical bandwidth" typically involves loudness summation experi-
ments (Zwicker et al., 1957). The critical band rate scale differs from Mel-scale mainly in that 
it uses the critical band as a natural scale unit. The code is based on the MA toolbox.

• mirspectrum(..., ‘Mask’) models masking phenomena in each band: when a certain energy ap-
pears at a given frequency, lower frequencies in the same frequency region may be unheard, 
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following particular equations. By modeling these masking effects, the unheard periodicities 
are removed from the spectrum. The code is based on the MA toolbox. In our example this 
will lead to:
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H A R M O N I C  S P E C T R A L  A N A L Y S I S
A lot of natural sounds, especially musical ones, are harmonic: each sound consists of a series 
of frequencies at a multiple ratio of the one of lowest frequency, called fundamental. Tech-
niques have been developed in signal processing to reduce each harmonic series to its funda-
mental, in order to simplify the representation. MIRtoolbox includes two related techniques for 
the attenuation of harmonics in spectral representation (Alonso et al, 2003):

• mirspectrum(..., ‘Prod’, m) Enhances components that have harmonics located at multiples of 
range(s) m of the signal's fundamental frequency. Computed by compressing the signal by 
thea list of factors m, and by multiplying all the results with the original signal. Default value 
is m = 1:6. Hence for this initial spectrum:
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we obtain this reduced spectrum:
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• mirspectrum(..., ‘Sum’, m) Similar idea using addition of the multiples instead of multiplica-
tion.
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A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Frequency’: the frequency (in Hz.) associated to each bin (same as ‘Pos’),

• ‘Magnitude’: the magnitude associated to each bin (same as ‘Data’),

• ‘Phase’: the phase associated to each bin,

• ‘XScale’: whether the frequency scale has been redistributed into cents – with (‘Cents(Co!ap-
sed)’) or without (‘Cents’) collapsing into one octave –, mels (‘Mel’), barks (‘Bark’), or not redis-
tributed at all (‘Freq’),

• ‘Power’: whether the spectrum has been squared (1) or not (0),

• ‘Log’: whether the spectrum is in log-scale (1) or in linear scale (0).
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mircepstrum

S P E C T R A L  A N A L Y S I S  O F  S P E C T R U M
The harmonic sequence can also be used for the detection of the fundamental frequency itself. 
One idea is to look at the spectrum representation, and try to automatically detect these peri-
odic sequences. And one simple idea consists in performing a Fourier Transform of the Fourier 
Transform itself, leading to a so-called cepstrum (Bogert et al., 1963).

So if we take the complex spectrum (Xk in the equation defining mirspectrum), we can operate 
the following chain of operations:

Fourier

transform
Log

(“Inverse”) Fourier 
transform

Phase

unwrap

(mirspectrum)

• First a logarithm is performed in order to allow an additive separability of product compo-
nents of the original spectrum. For instance, for the voice in particular, the spectrum is com-
posed of a product of a vocal cord elementary burst, their echoes, and the vocal track. In the 
logarithm representations, these components are now added one to each other, and we will 
then be able to detect the periodic signal as one of the components.

• Then because the logarithm provokes some modification of the phase, it is important to en-
sure that the phase remains continuous.

• Finally the second Fourier transform is performed in order to find the periodic sequences. As 
it is sometime a little difficult to conceive what a Fourier transform of Fourier transform is 
really about, we can simply say, as most say, that it is in fact an Inverse Fourier Transform (as 
it is the same thing, after all), and the results can then be expressed in a kind of temporal 
domain, with unit called “quefrency”.

For instance for this spectrum:
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we obtain the following cepstrum:
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The cepstrum can also be computed from the spectrum amplitude only, by simply taking the 
logarithm, and directly computing the Fourier transform.

Fourier

transform
Abs (“Inverse”) Fourier 

transform
audio

(mirspectrum)

Log

In this case, the phase of the spectrum is not computed.
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mircepstrum

mircepstrum accepts either:

• mirspectrum objects, or

• miraudio objects (same as for mirspectrum),

• file name or the ‘Folder’ keyword.

P A R A M E T E R  S P E C I F I C A T I O N S

• mircepstrum(..., ‘Freq’): The results can be represented, instead of using the quefrency domain 
(in seconds), back to the frequency domain (in Hz) by taking the inverse of each abscissae 
value. In this frequency representation, each peak is located on a position that directly in di-
cates the associated fundamental frequency.

• mircepstrum(..., ‘Min', min) specifies the lowest delay taken into consideration, in seconds. 
Default value: 0.0002 s (corresponding to a maximum frequency of 5 kHz). This default value 
is not set to 0 s in order to exclude the very high peaks confined in the lowest quefrency re-
gion: these high peaks seem to come from the fact that the spectrum is a non-centered sig-
nal, thus with high (quasi-)stationary energy. However, the value can be forced to 0 using this 
‘Min’ option.

• mircepstrum(..., ‘Max', max) specifies the highest delay taken into consideration, in seconds. 
Default value: 0.05 s (corresponding to a minimum frequency of 20 Hz). This default value is 
not set to Inf in order to exclude the very high peaks confined in the highest quefrency re-
gion: these high peaks seem to come from the fact that the spectrum is a highly variable sig-
nal, thus with high energy on its highest frequencies. However, the value can be forced to Inf 
using this ‘Max’ option.

• mircepstrum(..., ‘Complex') computes the cepstrum using the complex spectrum. By default, 
the cepstrum is computed from the spectrum amplitude only.

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

 

MIRtoolbox 1.3.2 User’s Manual" 47



• ‘Magnitude’: same as ‘Data’,

• ‘Phase’: the phase related to the magnitude,

• ‘Quefrency’: same as ‘Pos’,

• ‘FreqDomain’: whether the quefrency are in s. (0) or in Hz. (1).
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mirautocor

A U T O C O R R E L A T I O N  F U N C T I O N
Another way to evaluate periodicities in signals (be it an audio waveform, a spectrum, an enve-
lope, etc.) consists in looking at local correlation between samples. If we take a signal x, such as 
for instance this trumpet sound:

!"#$% !"#& !"#&% !"#' !"#'% !"#( !"#(% !") !")!% !")*

!!"%

!

!"%

+,-./012345/67

8.7409:;

2
7
<
=.8
,
-
4

the autocorrelation function is computed as follows:

For a given lag j, the autocorrelation Rxx(j) is computed by multiplying point par point the sig-
nal with a shifted version of it of j samples. We obtain this curve:
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Hence when the lag j corresponds to a period of the signal, the signal is shifted to one period 
ahead, and therefore is exactly superposed to the original signal. Hence the summation gives 
very high value, as the two signals are highly correlated.

 

MIRtoolbox 1.3.2 User’s Manual" 49



F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio

mirframe

mirautocor

mirspectrum

mironsets

mirframe

mirautocor usually accepts either:

• file name or the ‘Folder’ keyword, 

• miraudio objects, where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of 50 ms and half overlapping),

• mirspectrum objects,

• data in the onset detection curve category (cf. mironsets):

• mirenvelope objects, frame-decomposed or not,

• fluxes (cf. mirflux), frame-decomposed or not,

• mirautocor objects, for further processing.

P A R A M E T E R S  S P E C I F I C A T I O N

• mirautocor(..., ‘Min’, mi) indicates the lowest delay taken into consideration. Default value: 0 
s. The unit can be specified:

• mirautocor(..., ‘Min', mi, ‘s’) (default unit)

• mirautocor(..., ‘Min’, mi, ‘Hz’)

• mirautocor(..., ‘Max’, ma) indicates the highest delay taken into consideration. The unit can be 
specified as for 'Min’. Default value:

• if the input is an audio waveform, the highest delay is 0.05 s (corresponding to a mini-
mum frequency of 20 Hz).

• if the input is an envelope, the highest delay is 2 s.
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• mirautocor(..., ‘Normal’, n) specifies a normalization option for the cross-correlation (‘biased ’, 
‘unbiased ’, ‘coeff ’, ‘none’). This corresponds exactly to the normalization options in Matlab xcorr 
function, as mirautocor actually calls xcorr for the actual computation. The default value is ‘co-
eff ’,  corresponding to a normalization so that the autocorrelation at zero lag is identically 1. 
If the data is multi-channel, the normalization is such that the sum over channels at zero lag 
becomes identically 1. Note however that the ‘coeff ’ routine is not used when the compression 
(‘Compres’) factor k is not equal to 2 (see below).

P O S T - P R O C E S S I N G  O P T I O N S
• mirautocor(...,‘Freq’) represents the autocorrelation function in the frequency domain: the pe-

riods are expressed in Hz instead of seconds (see the last curve in the figure below for an il-
lustration).

• mirautocor(..., ‘NormalWindow’) divides the autocorrelation by the autocorrelation of the 
window. Boersma (1993) shows that by default the autocorrelation function gives higher coef-
ficients for small lags, since the summation is done on more samples. Thus by dividing by the 
autocorrelation of the window, we normalize all coefficients in such a way that this default is 
completely resolved. At first sight, the window should simply be a simple rectangular window. 
But Boersma (1993) shows that it is better to use ‘hanning’ window in particular, in order to 
obtain better harmonic to noise ratio.

• mirautocor(..., ‘NormalWindow’, w) specifies the window to be used, which can be any 
window available in the Signal Processing Toolbox. Besides w = ‘rectangular’ will not perform 
any particular windowing (corresponding to a rectangular (“invisible”) window), but the 
normalization of the autocorrelation by the autocorrelation of the invisible window will 
be performed nonetheless. The default value is w = ‘hanning’. 

• mirautocor(..., ‘NormalWindow’, ‘off ’) toggles off this normalization (which is ‘on’ by de-
fault).

• mirautocor(..., ‘Resonance’, r) multiplies the autocorrelation curve with a resonance curve that 
emphasizes pulsations that are more easily perceived.  Two resonance curves are proposed:

• r = ‘ToiviainenSnyder’ (Toiviainen & Snyder 2003) (default value if ‘Resonance’ option tog-
gled on),

• r = ‘vanNoorden’ (van Noorden & Moelants, 1999).

This option should be used only when the input of the mirautocor function is an amplitude en-
velope, i.e., a mirenvelope object.

• mirautocor(..., ‘Center’, c)  assigns the center value of the resonance curve, in seconds. 
Works mainly with 'Toiviainen' option. Default value: c = 0.5.
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Resonance curves ‘ToiviainenSnyder’ (le6) and ‘vanNoorden’ (right)

• mirautocor(..., ‘Halfwave’) performs a half-wave rectification on the result, in order to just 
show the positive autocorrelation coefficients.

G E N E R A L I Z E D  A U T O C O R R E L A T I O N
mirautocor(..., ‘Compres’, k) – or equivalently mirautocor(..., ‘Generalized’, k) – computes the 
autocorrelation in the frequency domain and includes a magnitude compression of the spectral 
representation. Indeed an autocorrelation can be expressed using Discrete Fourier Transform 
as 

y = IDFT(|DFT(x)|^2),

which can be generalized as: 

y = IDFT(|DFT(x)|^k), 

Compression of the autocorrelation (i.e., setting a value of k lower than 2) are recommended in 
(Tolonen & Karjalainen, 2000) because this decreases the width of the peaks in the autocorre-
lation curve, at the risk however of increasing the sensitivity to noise. According to this study, a 
good compromise seems to be achieved using value k = .67. By default, no compression is per-
formed (hence k = 2), whereas if the ‘Compress’ keyword is used, value k = .67 is set by default if 
no other value is indicated.

E N H A N C E D  A U T O C O R R E L A T I O N
In the autocorrelation function, for each periodicity in the signal, peaks will be shown not only 
at the lag corresponding to that periodicity, but also to all the multiples of that periodicity. In 
order to avoid such redundancy of information, techniques have been proposed that automati-
cally remove these harmonics. In the frequency domain, this corresponds to sub-harmonics of 
the peaks.
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mirautocor(..., ‘Enhanced’, a): The original autocorrelation function is half-wave rectified, time-
scaled by factor a (which can be a factor list as well), and subtracted from the original clipped 
function (Tolonen & Karjalainen, 2000). If the 'Enhanced' option is not followed by any value, 
the default value is a = 2:10, i.e., from 2 to 10.

If the curve does not start from zero at low lags but begins instead with strictly positive values, 
the initial discontinuity would be propagated throughout all the scaled version of the curve. In 
order to avoid this phenomenon, the curve is modified in two successive ways:

• if the curve starts with a descending slope, the whole part before the first local minimum is 
removed from the curve,

• if the curve starts with an ascending slope, the curve is prolonged to the left following the 
same slope but which is increased by a factor of 1.1 at each successive bin, until the curve 
reaches the x-axis.

See the figure below for an example of enhanced autocorrelation when computing the pitch 
content of a piano Amin3 chord, with the successive step of the default enhancement, as used 
by default in mirpitch (cf. description of mirpitch).
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fig 1: Waveform autocorrelation of a piano chord Amaj3 (blue), and scaled autocorrelation of factor 2 (red);  
fig 2: subtraction of the autocorrelation by the previous scaled autocorrelation (blue), scaled autocorrela-

tion of factor 3 (red); fig 3: resulting subtraction (blue), scaled autocorrelation of factor 4(red); fig 4: idem 
for factor 5; fig 5: idem for factor 6; fig 6:idem for factor 7; fig 7: resulting autocorrelation curve in the -e-

quency domain and peak picking

! !"!!# !"!!$ !"!!% !"!!& !"!' !"!'# !"!'$
!!"!'

!

!"!'

!"!#

!"!(

!"!$

!"!)

!"!%

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.005

0.01

0.015

0.02

0.025

0.03

100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

Waveform autocorrelation

frequency (Hz)

c
o

e
ff

ic
ie

n
ts

 

MIRtoolbox 1.3.2 User’s Manual" 54



A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Coeff’: the autocorrelation coefficients (same as ‘Data’),

• ‘Lag’: the lags (same as ‘Pos’),

• ‘FreqDomain’: whether the lags are in s. (0) or in Hz. (1),

• ‘OfSpectrum’: whether the input is a temporal signal (0), or a spectrum (1),

• ‘Window’: contains the complete envelope signal used for the windowing.
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*

C O M B I N I N G  R E P R E S E N T A T I O N S
It is also possible to multiple points by points diverse spectral representations and autocorrela-
tion functions, the latter being automatically translated to the spectrum domain (Peeters, 
2006). Curves are half-wave rectified before multiplication.

mirspectrum mircepstrum

mirautocor

mirsegment

mirfilterbank

miraudio

mirframe

mirsum

*
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mirflux

D I S T A N C E  B E T W E E N  S U C C E S S I V E  F R A M E S
Given a spectrogram:

s = mirspectrum(a, ‘Frame’)

we can compute the spectral flux as being the distance between the spectrum of each succes-
sive frames.

mirflux(s)
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Spectral flux

The peaks in the curve indicate the temporal position of important contrast in the spectro-
gram.

In MIRtoolbox fluxes are generalized to any kind of frame-decomposed representation, for in-
stance a cepstral flux:

c = mircepstrum(a, ‘Frame’)
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mirflux(c)
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirflux

miraudio

mirspectrum

mircepstrum

mirautocor

mirfilterbank

mirsegment

mirchromagram mirkeystrength

mirframe mirmfcc

mirsum

mirtonalcentroid

mirflux usually accepts either:

• mirspectrum frame-decomposed objects.

• miraudio objects, where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank). The audio waveform is decomposed into 
frames if it was not decomposed yet, and the default frame parameters – frame length of 50 
ms and a hop factor of 0.5 – can be changed using the ‘Frame’ option. If the input is a mirau-
dio object, the default flux is a spectral flux: i.e., the audio waveform is passed to the mirspec-
trum operator before being fed into mirflux. 
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• file name or the ‘Folder’ keyword: same behavior than for miraudio objects;

• mirautocor frame-decomposed objects;

• mircepstrum frame-decomposed objects;

• mirmfcc frame-decomposed objects;

• mirchromagram frame-decomposed objects;

• mirkeystrength frame-decomposed objects.

P A R A M E T E R S  S P E C I F I C A T I O N
• mirflux(x, 'Dist’, d) specifies the distance between successive  frames:

• d = 'Euclidian’: Euclidian distance (Default)

• d = 'City’: City-block distance

• d = 'Cosine’: Cosine distance (or normalized correlation)

• mirflux(..., 'Inc’): Only positive difference between frames are summed, in order to focus on 
increase of energy solely.

• mirflux(..., ‘Complex’), for spectral flux, combines the use of both energy and phase informa-
tion (Bello et al, 2004).

P O S T - P R O C E S S I N G

• mirflux(..., ‘Halfwave’): performs a half-wave  rectification on the result.

• mirflux(..., 'Median’, l, C): removes small spurious peaks by subtracting to the result its me-
dian filtering. The median filter computes the point-wise median inside a window of length l 
(in seconds), that  includes a same number of previous and next samples. C is a scaling factor 
whose purpose is to artificially rise the curve slightly above the steady state of the signal. If 
no parameters are given, the default values are: l = 0.2 s. and C = 1.3

• mirflux(..., 'Median’, l, C, 'Halfwave’): The scaled median filtering is designed to be suc-
ceeded by the  half-wave rectification process in order to select peaks above the dynamic 
threshold calculated with the help of the median filter. The resulting signal is called "detection 
function” (Alonso et al., 2003). To ensure accurate detection, the length l of the median filter 
must be longer than the average width of the peaks of the detection function.
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mirsum

S U M M A T I O N  O F  F I L T E R B A N K  C H A N N E L S
Once an audio waveform is decomposed into channels using a filterbank:

f = mirfilterbank(a)
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An envelope extraction, for instance, can be computed using this very simple syntax:

e = mirenvelope(f)
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Then the channels can be summed back using the mirsum command:

s = mirsum(e)
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The summation can be centered using the command:

s = mirsum(..., ‘Center’)

The summation can be divided by the number of channels using the command:

s = mirsum(..., ‘Mean’)

S U M M A R Y  O F  F I L T E R B A N K  C H A N N E L S
If we compute for instance an autocorrelation from the envelopes:

ac = mirautocor(e)
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Then we can sum all the autocorrelation using exactly the same mirsum command:

s = mirsum(e)
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This summation of non-temporal signals across channels is usually called summary. 
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mirpeaks

P E A K  P I C K I N G
Peaks (or important local maxima) can be detected automatically from any data x produced in 
MIRtoolbox using the command 

mirpeaks(x)

If x is a curve, peaks are represented by red circles:
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If x is a frame-decomposed matrix, peaks are represented by white crosses:

!"# $ $"# % %"# & &"# '

$!

%!

&!

'!

()*!+,)-./01

.)1,2/3*4*2-3.52642748)956656942747/31)4:564;"<

(
)
*4
8
3
6
=
;

P A R A M E T E R S  S P E C I F I C A T I O N

• mirpeaks(..., ‘Total’, m): only the m highest peaks are selected. If m = Inf, no limitation of 
number of peaks. Default value: m = Inf

• Border effects can be specified:

• mirpeaks(..., ‘NoBegin’) does not consider the first sample as a possible peak candidate.

• mirpeaks(..., ‘NoEnd’) does not consider the last sample as a possible peak candidate.

• mirpeaks(..., ‘Order’, o) specifies the ordering of the peaks.

• o = ‘Amplitude’ orders the peaks from highest to lowest (Default choice.)

• o = ‘Abscissa’ orders the peaks along the abscissa axis.
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• mirpeaks(..., ‘Valleys') detect valleys (local minima) instead of peaks.

• mirpeaks(..., ‘Contrast’, cthr): A given local maximum will be considered as a peak if its dis-
tance with the previous and successive local minima (if any) is higher than  this threshold 
cthr. This distance is expressed with respect to the total amplitude of the input signal: a dis-
tance of 1, for instance, is equivalent to the distance between the maximum and the mini-
mum of the input signal. Default value: cthr = 0.1
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• mirpeaks(..., ‘SelectFirst’, 6hr): If the 'Contrast' selection has been chosen, this additional op-
tion specifies that when one peak has to be chosen out of two candidates, and if the  differ-
ence of their amplitude is below the threshold thr, then the most ancien one is selected. Op-
tion toggled off by default. Default value if toggled on: 6hr = cthr/2

• mirpeaks(..., ‘Threshold’, thr):  A given local maximum will be considered as a peak if its nor-
malized amplitude is higher than this threshold thr.  A given local minimum will be consid-
ered as a valley if its normalized amplitude is lower than this threshold.  The normalized am-
plitude can have value between 0 (the minimum  of the signal in each frame) and 1 (the 
maximum in each frame). Default value: thr=0 for peaks, thr = 1 for valleys.
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• mirpeaks(..., ‘Interpol’, i) estimates more precisely the peak position and amplitude using in-
terpolation. Performed only on data with numerical abscissae axis.

• i = '', ‘no’, ‘off’, 0: no interpolation

• i = 'Quadratic': quadratic interpolation. (default value).
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• mirpeaks(..., ‘Reso’, r) removes peaks whose distance to one or several higher peaks is lower 
than a given threshold. Possible value for the threshold: r = 'SemiTone’: ratio between the 
two peak positions equal to 2^(1/12). By default, out of two conflicting peaks, the higher peak 
remains. If the keyword ‘First’ is added, the peak with lower abscissa value remains instead.

• mirpeaks(..., ‘Pref’, c, std) indicates a region of preference for the peak picking, centered on the 
abscissa value c, with a standard deviation of std.

• mirpeaks(..., ‘Nearest’, t, s) takes the peak nearest a given abscissa values t. The distance is 
computed either on a linear scale (s = 'Lin’) or logarithmic scale (s = 'Log’). When using the 
‘Nearest’ option, only one peak is extracted.

) The ‘Total’ parameter can then be used to indicate the number of peaks to preselect be-
fore the ‘Nearest’ selection. If ‘Total’ was still set to 1, it is then ignored – i.e., forced to Inf – in 
order to preselect all possible peaks.

• mirpeaks(..., 'Normalize’, n) specifies whether frames are normalized globally or individually.

• n = 'Global’ normalizes the whole frames altogether from 0 to  1 (default choice).

• n = 'Local’: normalizes each frame from 0 to 1.

• mirpeaks(..., ‘Extract’) extracts from the curves all the positive continuous segments (or 
"curve portions") where peaks are located. First, a low-pass filtered version of the curve is 
computed, on which the temporal span of the positive lobes containing each peak are stored. 
The output consists of the part of the original non-filtered curve corresponding to the same 
temporal span. For instance:

ac = mirautocor('ragtime')

mirpeaks(ac, ‘Extract’)
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• mirpeaks(..., ‘Only’), keeps from the original curve only the data corresponding to the peaks, 
and zeroes the remaining data.

mirpeaks(ac, ‘Only’)

• mirpeaks(..., ‘Track’, t), where the input is some frame-decomposed vectorial data – such as 
spectrogram, for instance –, tracks peaks along time using McAulay & Quatieri’s (1986) 
method: lines are drawn between contiguous temporal series of peaks that are sufficiently 
aligned. If a value t is specified, the variation between successive frames is tolerated up to t, 
expressed using the abscissae unit. For instance, the figure below shows the result (zoomed) of 
the following commands:

s = mirspectrum(‘trumpet’, ‘Frame’);

mirpeaks(s, ‘Track’, 25)

• mirpeaks(..., ‘CollapseTracks’, t), collapses tracks into one single track, and remove small 
track transitions, of length shorter than ct samples. Default value: ct = 7.
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A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘PeakPos’: the abscissae position of the detected peaks, in sample index,

• ‘PeakPosUnit’: the abscissae position of the detected peaks, in the default abscissae repre-
sentation,

• ‘PeakPrecisePos’: a more precise estimation of the abscissae position of the detected peaks 
computed through interpolation, in the default abscissae representation,

• ‘PeakVal’: the ordinate values associated to the detected peaks,

• ‘PeakPreciseVal’: a more precise estimation of the ordinate values associated to the detected 
peaks, computed through interpolation,

• ‘PeakMode’: the mode values associated to the detected peaks,

• ‘TrackPos’: the abscissae position of the peak tracks, in sample index,

• ‘TrackPosUnit’: the abscissae position of the peak tracks, in the default abscissae represen-
tation,

• ‘TrackVal’: the ordinate values of the peak tracks..
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mirsegment

S E G M E N T A T I O N

• An audio waveform a can be segmented using the output p of a peak picking from data re-
sulting from a itself, using the following syntax:

sg = mirsegment(a, p)

a p
miraudio mirpeaks

mirsegment

• An audio waveform a can also be segmented manually, based on temporal position directly 
given by the user, in the form:

sg = mirsegment(a, v)

where v can be either:

• a(n array of) number(s) corresponding to time positions in seconds,

• a 2*n matrix of starting and ending temporal positions, in seconds. This second syntax 
allows overlapping and/or discontinuities between segments.

• Automated segmentation methods are provided as well, that can be called using the syntax:

sg = mirsegment(a, m)

where m is the name of one of the following segmentation methods: ‘Novelty’ (default, cf. mir-
novelty), ‘HCDF’ (cf. mirhcdf) or ‘RMS’ (cf. mirrms).

mirsegment accepts uniquely as main input a miraudio objects not frame-decomposed, not 
channel decomposed, and not already segmented. Alternatively, file name or the ‘Folder’ key-
word can be used as well.

The first argument of the mirsegment function is the audio file that needs to be segmented. It is 
possible for instance to compute the segmentation curve using a downsampled version of the 
signal and to perform the actual segmentation using the original audio file.
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E X A M P L E
sg = mirsegment(‘ragtime’, ‘Novelty’, ‘KernelSize’, 32)
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The output can be sent to any further analysis, for instance:

sp = mirspectrum(sg, ‘dB’)

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. 
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• ‘FramePos’: For segmented data, this returns a cell array where each cell is a matrix contai-
ning the starting and ending temporal positions of the frames in each successive segment. 
When there is no frame decomposition, each cell contains simply the starting and ending 
time of each successive segment.
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mirplay

S O N I F I C A T I O N  O F  T H E  R E S U L T
Certain classes of temporal data can be sonified:

• miraudio objects: the waveform is directly played, and

• if the audio waveform is segmented (using mirsegment), segments are played succes-
sively with a short burst of noise in-between;

• if the audio waveform is decomposed into channels (using mirfilterbank), channels are 
played successively from low to high register;

• if the audio is decomposed into frames (using mirframe or the ‘Frame’ option, with by 
default a frame length of 50 ms and half overlapping), frames are played successively;

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects;

• mirenvelope objects (frame-decomposed or not) are sonified using a white noise modulated 
in amplitude by the envelope,

• mirpitch results: each extracted frequency is sonified using a sinusoid.

mirsum

mirenvelope

mirfilterbank

miraudio

mirsegment mirframe

mirplay

O P T I O N S
• mirplay(..., 'Channel’, i) plays the channel(s) of rank(s) indicated by the array i.

• mirplay(..., 'Segment’, k) plays the segment(s) of rank(s) indicated by the array k.

• mirplay(..., 'Sequence’, l) plays the sequence(s) of rank(s) indicated by the array l.

• mirplay(..., 'Increasing’, d) plays the sequences in increasing order of d, which can be either 
an array of number or a mirscalar data (i.e., a scalar data returned by MIRtoolbox).

• mirplay(..., 'Decreasing’, d) plays the sequences in decreasing order of d, which can be either 
an array of number or a mirscalar data (i.e., a scalar data returned by MIRtoolbox).
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• mirplay(..., 'Every’, s) plays every s sequence, where s is a number indicating the step between 
sequences.

• mirplay(...,‘Burst’, ‘No’) toggles off the burst sound between segments.

Example:

e = mirenvelope('Folder');

rms = mirrms('Folder');

mirplay(e, 'increasing', rms, 'every',5)
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mirsave

S A V I N G  A U D I O  R E N D E R I N G  I N T O  F I L E S
Certain classes of temporal data can be saved:

• miraudio objects: the waveform is directly saved, and

• if the audio waveform is segmented (using mirsegment), segments are concatenated 
with a short burst of noise in-between;

• if the audio waveform is decomposed into channels (using mirfilterbank), each channel 
is saved in a separate file;

• if the audio is decomposed into frames (using mirframe or the ‘Frame’ option, with by 
default a frame length of 50 ms and half overlapping), frames are concatenated;

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects;

• mirenvelope objects (frame-decomposed or not) are sonified using a white noise modulated 
in amplitude by the envelope,

• mirpitch results: each extracted frequency is sonified using a sinusoid.

mirsum

mirenvelope

mirfilterbank

miraudio

mirsegment mirframe

mirsave

O P T I O N S
• The name and extension of the saved file can be specified in different ways, as shown in the 

tables below.

• By default, the files are saved in WAV format, using the extension ‘.mir.sav’ in order to 
lower the risk of overwriting original audio files.

• If the string ‘.au’ is indicated as second argument of mirsave, the audio will be saved in 
AU format.

• A string can be indicated as second argument of mirsave.
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• If the miraudio object to be saved contains only one audio file, the specified string will 
be used as the name of the new audio file.

•  If the miraudio object to be saved contains several audio files, the specified string will 
be concatenated to the original name of each audio file.

• If the second argument of mirsave is a string ended by ‘.au’, the file name will follow the 
convention explained in the previous point, and the files will be saved in AU format.

a = miraudio(‘mysong.au’) mysong.au
mirsave(a) mysong.mir.wav

mirsave(a,‘new’) new.wav
mirsave(a,‘.au’) mysong.mir.au

mirsave(a,‘new.au’) new.au

Diverse ways of saving into an audio file

a = miraudio(‘Folder’) song1.wav song2.wav song3.au
mirsave(a) song1.mir.wav song2.mir.wav song3.mir.wav

mirsave(a,‘new’) song1new.wav song2new.wav song3new.wav
mirsave(a,‘.au’) song1.mir.au song2.mir.au song3.mir.au

mirsave(a,‘new.au’) song1new.au song2new.au song3new.au

Diverse ways of saving as a batch of audio files

• If the third argument of mirsave is ‘SeparateChannels’, each separate channel is saved in a 
different file. The channel number is added to the file name, before any file extension.
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mirlength

T E M P O R A L  L E N G T H  O F  S E Q U E N C E S
mirlength returns the temporal length of the temporal sequence given in input, which can be 
either an audio waveform (miraudio) or an envelope curve (mirenvelope). If the input was de-
composed into segments (mirsegment), mirlength returns a curve indicating the series of tempo-
ral duration associated with each successive segment.

mirsum

mirenvelope

mirfilterbank

miraudio

mirsegment mirframe

mirlength

O P T I O N S

• mirlength(..., ‘Unit’, u) specifies the length unit. The possible values are:

• u = ‘Second’: duration in seconds (Default choice).

• u = ‘Sample’: length in number of samples.
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3 .  FEATURE EXTRACTORS
The musical feature extractors can be organized along main musical dimensions: dynamics, 
rhythm, timbre, pitch and tonality.

3.1. Dynamics

mirrms

R O O T - M E A N - S Q U A R E  E N E R G Y
The global energy of the signal x can be computed simply by taking the root average of the 
square of the amplitude, also called root-mean-square (RMS):

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirrms

mirframe

mirrms accepts as input data type either:

• miraudio objects, where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of 50 ms and half overlapping),

• file name or the ‘Folder’ keyword. 

The following command orders the computation of the RMS related to a given audio file:

mirrms(‘ragtime’)

which produce the resulting message in the Command Window:
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The RMS energy related to file ragtime is 0.017932 

If we know ask for a frame-decomposed computation of RMS:

mirrms(‘ragtime’, ‘Frame’)

we obtain a temporal evolution of the energy:
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We can note that this energy curve is very close to the envelope:
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O P T I O N
• mirrms(..., ‘Root’, ‘no’) does not compute the square-root after the averaging.
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mirsegment(..., ‘RMS’)
Segmentation at positions of long silences. A frame decomposed RMS is computed using 
mirrms (with default options), and segments are selected from temporal positions where the 
RMS rises to a given ‘On’ threshold, until temporal positions where the RMS drops back to a 
given ‘Off’ threshold.

O P T I O N S

• mirsegment(...,‘Off’, t1) specifies the RMS ‘Off’ threshold. Default value: t1 = .01

• mirsegment(...,‘On’, t2) specifies the RMS ‘On’ threshold. Default value: t2 = .02

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsegment

mirfilterbank

miraudio mirrmsmirframe

mirsegment accepts uniquely as main input a miraudio objects not frame-decomposed, not 
channel decomposed, and not already segmented. Alternatively, file name or the ‘Folder’ key-
word can be used as well.

mirsegment(..., ‘RMS’) can return several outputs:

1. the segmented audio waveform itself,

2. the RMS curve (mirrms).
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mirlowenergy

D E S C R I P T I O N
The energy curve can be used to get an assessment of the temporal distribution of energy, in 
order to see if its remains constant throughout the signal, or if some frames are more contras-
tive than others. One way to estimate this consists in computing the low energy rate, i.e. the 
percentage of frames showing less-than-average energy (Tzanetakis and Cook, 2002).

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirrmsmirframe mirlowenergy

mirlowenergy accepts as input data type either:

• mirrms frame-decomposed data,

• miraudio objects, where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank). The audio waveform is decomposed into 
frames if it was not decomposed yet, and the default frame parameters – frame length of 50 
ms and half overlapping – can be changed using the ‘Frame’ option. 

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects.

mirlowenergy can return several outputs:

1. the low-energy rate itself and

2. the mirrms frame-decomposed data.

E X A M P L E S
If we take for instance this energy curve:

r1 = mirrms(‘a1’, ‘Frame’)
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We can see that due to some rare frames containing particularly high energy, most of the 
frames are below the average RMS. And indeed if we compute the low-energy rate 

mirlowenergy(r1)

we obtain the value 0.71317.

For this opposite example:

r2 = mirrms(‘a2’, ‘Frame’)

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

frames

c
o
e
ff
ic

ie
n
t 
v
a
lu

e
 (

in
 )

RMS energy

there are two kind of frames basically, those that have quite constant high energy, and fewer 
that have very low energy. Hence most of the frames are over the average energy, leading to a 
low low-energy rate:

mirlowenergy(r2)

equal to 0.42398

O P T I O N S

• mirlowenergy(..., 'Threshold’, t) expressed as a ratio to the average energy over the frames. 
Default value: t = 1

• mirlowenergy(..., 'Root’, ...) specifies the ‘Root’ option used in mirrms. Toggled on by default.
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• mirlowenergy(..., ‘ASR’) computes the Average Silence Ratio (Feng, Zhuang, Pan, 2003), which 
corresponds in fact to 

mirlowenergy(...,'Root', ‘no’, ‘Threshold', t)

where t is fixed here by default to a smaller value t = .5
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3.2. Rhythm

The estimation of rhythmicity in the audio signal can be performed using the basic operators 
we introduced previously.

mirfluctuation

R H Y T H M I C  P E R I O D I C I T Y  A L O N G  A U D I T O R Y  C H A N-
N E L S
One way of estimating the rhythmic is based on spectrogram computation transformed by 
auditory modeling and then a spectrum estimation in each band (Pampalk et al., 2002). The 
implementation proposed in MIRtoolbox includes a subset of the series of operations proposed 
in Pampalk et al.:

• First the spectrogram is computed on frames of 23 ms and half overlapping, then the Ter-
hardt outer ear modeling is computed, with Bark-band redistribution of the energy, and esti-
mation of the masking effects, and finally the amplitudes are computed in dB scale:

s = mirspectrum(..., ‘Frame’, .023, .5, ‘Terhardt’, ‘Bark’, ‘Mask’, ‘dB’)

• Then a FFT is computed on each Bark band, from 0 to 10 Hz, with a resolution specified by 
the ‘MinRes’ option (default: .01 Hz). The amplitude modulation coefficients are weighted 
based on the psychoacoustic model of the fluctuation strength (Fastl, 1982). We can see in the 
matrix the rhythmic periodicities for each different Bark band.

f = mirspectrum(s, ‘AlongBands’, ‘Max’, 10, ‘Window’, 0, ‘Resonance’, ‘Fluctuation’)

• mirfluctuation(..., ‘Summary’) subsequently sums the resulting spectrum across bands, leading 
to a spectrum summary, showing the global repartition of rhythmic periodicities:

mirsum(f)
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsegment

miraudio mirspectrummirframe mirspectrum mirfluctuation mirsum

‘Frame’, .023, .5
‘Terhardt’

‘Bark’
‘Mask’

‘dB’

‘AlongBands’
‘Max’, 10

‘Window’, 0
‘Resonance’, ‘Fluctuation’

‘MinRes’, .01

mirfluctuation accepts as input data type either:

• mirspectrum frame-decomposed objects (i.e., spectrograms),

• miraudio objects, where the audio waveform can be segmented (using mirsegment). The 
audio waveform is decomposed into frames if it was not decomposed yet, using the following 
frame parameters: frame length of 23 ms and half overlapping.

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects.

If you need a frame-decomposed fluctuation curve, showing the temporal evolution of fluctua-
tion frame after frame, you can not use mir-ame or the ‘Frame’ option. Why? because mirfluc-
tuation already implies frame decomposition from the start, so mir-ame will not toggle on the 
frame decomposition (already toggled on), but just control the frame parameters.

If you want to get the temporal evolution of fluctuation, first perform a manual segmentation 
(for instance, every 10 s). You can put any large number as last argument (100s, or whatever).

s = mirsegment(‘test’, 0:10:100);  

Then you can compute the fluctuation of each successive segment separately:

fluct = mirfluctuation(s);
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mirbeatspectrum

B E A T  S P E C T R U M
The beat spectrum has been proposed as a measure of acoustic self-similarity as a function of 
time lag, and is computed from the similarity matrix (cf. mirsimatrix) (Foote, Cooper and Nam, 
2002).

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsimatrix

miraudio

mirspectrum

mircepstrum

mirautocor

mirfilterbank

mirsegment

mirchromagram mirkeystrength

mirframe mirmfcc

mirsum

mirbeatspectrum

‘Similarity’

mirtonalcentroid

One parameter related to mirsimatrix is accessible in mirbeatspectrum:

• ‘Distance’.

mirbeatspectrum accepts either:

• mirsimatrix objects,

• mirspectrum frame-decomposed objects,

• miraudio objects: in this case, the similarity matrix will be based on the mfcc (mirmfcc), 
computed from ranks 8 to 33. The audio waveform is decomposed into frames if it was not 
decomposed yet, and the default frame parameters – frame length of 25 ms with 10 ms over-
lapping – can be changed using the ‘Frame’ option. file name or the ‘Folder’ keyword: same 
behavior as for miraudio objects,

• other frame-decomposed analysis.

mirbeatspectrum can return several outputs:

1. the beat spectrum curve itself, and

2. the similarity matrix (mirsimatrix).

 

MIRtoolbox 1.3.2 User’s Manual" 83



mironsets

E S T I M A T I O N  O F  N O T E S  O N S E T  T I M E
Another way of determining the tempo is based on first the computation of an onset detection 
curve, showing the successive bursts of energy corresponding to the successive pulses. A peak 
picking is automatically performed on the onset detection curve, in order to show the esti-
mated positions of the notes.

mironsets(‘ragtime’)

F L O W C H A R T  I N T E R C O N N E C T I O N S

mironsets

mirframe

mirflux

mirsum

mirenvelope
miraudio

mirfilterbank

mirframe

mirsegment mirpeaks

mirsimatrix mirnovelty

The onset detection curve can be computed in various ways:

• mironsets(..., ‘Envelope’) computes an amplitude envelope, using mirenvelope (default 
choice). The envelope extraction can be specified, as in mirenvelope:

• either the ‘Spectro’ option (default):  

• mironsets(...,‘SpectroFrame’, fl, 7) species the frame length fl (in s.) and the hop factor  
7 (as a value between 0 and 1). Default values: fl = .1 s., 7 = .1

• the frequency reassigment method can be specified: ‘Freq’ (default), ‘Mel’, ‘Bark’ or 
‘Cents’ (cf. mirspectrum).
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• or the ‘Filter’ option: Related options in mirenvelope can be specified: ‘FilterType’, 
‘Tau’, ‘PreDecim’ with same default value than for mirenvelope.

• mironsets(...,‘Filterbank’, N) specifies the number of channels for the filterbank de-
composition (mirfilterbank): the default value being N = 40. N = 0 toggles off the 
filterbank decomposition.

• mironsets(...,‘FilterbankType’, t) specifies the type of filterbank decomposition (cf. 
mirfilterbank).

• mironsets(..., ‘Sum’, ‘off ’) toggles off the channel summation (mirsum) that is performed 
by default.

• Other available options, related to mirenvelope: ‘HalfwaveCenter’, ‘Log’, ‘Mu’, ‘Power’, 
‘Diff’, ‘HalfwaveDiff’, ‘Lambda’, ‘Center’, ‘Smooth’, ‘PostDecim’, ‘Sampling’, ‘Up-
Sample’, all with same default as in mirenvelope.

• mironsets(..., ‘SpectralFlux’) computes a spectral flux. Options related to mirflux can be 
passed here as well: 

• ‘Inc’ (toggled on by default here),

• ‘Halfwave’ (toggled on by default here),

• ‘Complex’ (toggled off by default as usual),

• ‘Median’ (toggled on by default here, with same default parameters than in mirflux).

• mironsets(..., ‘Pitch’) computes a frame-decomposed autocorrelation function (mirautocor), 
of same default characteristics than those returned by mirpitch – with however a range of 
frequencies set by the following options:

• ‘Min’ (set by default to 30 Hz),

• ‘Max’ (set by default to 1000 Hz),

and subsequently computes the novelty curve of the resulting similatrix matrix. Option related 
to mirnovelty can be passed here as well:

• ‘KernelSize’ (set to 32 samples by default).

mironsets accepts as input data type either:

• envelope curves (resulting from mirenvelope),

• any scalar object, in particular:
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• fluxes (resulting from mirflux)

• novelty curves (resulting from mirnovelty)

• similatrix matrices (resulting from mirsimatrix): its novelty is automatically computed, 
with a ‘KernelSize’ of 32 samples.

• miraudio objects, where the audio waveform can be:

• segmented (using mirsegment), 

• decomposed into channels (using mirfilterbank),

• decomposed into frames or not (using mirframe):

• if the audio waveform is decomposed into frames, the onset curve will be based on 
the spectral flux;

• if the audio waveform is not decomposed into frames, the default onset curve will be 
based on the envelope;

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects,

• any other object: it is decomposed into frames (if not already decomposed) using the parame-
ters specified by the ‘Frame’ option; the flux will be automatically computed by default, or 
the novelty (if the ‘Pitch’ option has been chosen).

E X A M P L E
Differentiating the envelope using the ‘Diff’ option highlights the difference of energy. By sub-
sequently applying a halfwave rectification of the result (‘HalfwaveDiff’), bursts of energy are 
emphasized:

For the previous example (cf. figure above) we obtain now for the differentiated envelopes the 
following representation:
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o = mironsets(‘ragtime', ‘Diff', ‘Sum', ‘no’, ‘Filterbank', 5, 'Halfwavediff', 'Detect', 'no')

And once the enveloped are summed:

mirsum(o)

O N S E T  D E T E C T I O N
• mironsets(..., 'Detect’, d) specifies options related to the peak picking from the onset detec-

tion curve:

• d = ‘Peaks’ (default choice): local maxima are chosen as onset positions;

• d = ‘Va!eys’: local minima are chosen as onset positions;

• d = 0, or ‘no’, or ‘off’: no peak picking is performed.

Options associated to the mirpeaks function can be specified as well. In particular:
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• mironsets(..., ‘Contrast’, c) with default value here c = .01, 

• mironsets(..., ‘Threshold’, t) with default value here t = 0.

A T T A C K  A N D  R E L E A S E
The maxima of the onset detection curve show the positions of the note onsets, but more pre-
cisely the end of the attack phase. The ‘Attack’ and ‘Release’ options estimate the beginning of 
the attack phase and the end of the release phase of each note by searching for the local mini-
mum before and after each peak.

• mironsets(..., 'Attack’) (or 'Attacks’) detects attack phases.

• mironsets(..., 'Gauss’, o) detects starting points using a Gaussian envelope smoothing of 
order o.

mironsets(‘ragtime’, ‘attacks’)

• mironsets(..., 'Release’, r) (or 'Releases’) detects release phases.

• mironsets(..., 'Gauss’, o) detects starting points using a Gaussian envelope smoothing of 
order o.

mironsets(‘ragtime’, ‘releases’)
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S E G M E N T A T I O N
The onset points can be used for segmentation of the initial waveform:
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o = mironsets(‘ragtime’); mirsegment(‘ragtime’, o)

Alternatively, the beginning of the attack phases can be used for the segmentation:
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o = mironsets(‘ragtime’, ‘Attacks’); mirsegment(‘ragtime’, o)

F R A M E  D E C O M P O S I T I O N
If the onset detection curve is not a scalar object (i.e., basically, if the output is an envelope), it 
can be further decomposed into frames if the ‘Frame’ option has been specified, with default 
frame length 3 seconds and hop factor .1

P R E S E L E C T E D  M O D E L

Complete (or nearly complete) models are available:

• mironsets(..., ‘Scheirer’) follows the model proposed in (Scheirer, 1998). Il corresponds to

 mironsets(..., ‘FilterbankType’, ‘Scheirer’, ‘FilterType’, ‘HalfHann’, ‘Sampling’, 200, 
‘HalfwaveDiff ’, ‘Sum’, 0, ‘Detect’, 0)
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• mirenvelope(..., ‘Klapuri99) follows the model proposed in (Klapuri., 1999). Il corresponds to

 o = mironsets(..., ‘FilterbankType’, ‘Klapuri’, ‘FilterType’, ‘HalfHann’, ‘PreDecim’, 180, 
‘Sum’, 0, ‘PostDecim’, 0);

o2= mirenvelope(o, ‘HalfwaveDiff'); % absolute distance function D

o= mirenvelope(o, ‘Mu’, ‘HalfwaveDiff'); % relative distance function W

    p = mirpeaks(o, ‘Contrast’, .2, ‘Chrono’);

    p2 = mirpeaks(o2, ‘ScanForward’, p, ‘Chrono’);

    o = combinepeaks(p, p2, .05);

where combinepeaks is a dedicated function that creates a curve made of burst at position of 
peaks p and with amplitude related to peaks p2.

o = mirsum(o, ‘Weights’, fB);

The intensity is multiplied by the band center frequency fB.

    o = mirenvelope(o, ‘Smooth’, 12);

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘AttackPos’: the abscissae position of the starting attack phases, in sample index,

• ‘AttackPosUnit’: the abscissae position of the starting attack phases, in the default abscis-
sae representation,

• ‘ReleasePos’: the abscissae position of the ending release phases, in sample index,

• ‘ReleasePosUnit’: the abscissae position of the ending release phases, in the default abscis-
sae representation.
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mireventdensity

D E S C R I P T I O N
Estimates the average frequency of events, i.e., the number of note onsets per second.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mironsets mireventdensity

mirframe
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mirtempo

D E S C R I P T I O N
Estimates the tempo by detecting periodicities from the onset detection curve.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mironsets

mirflux

mirsum

mirenvelope

miraudio

mirfilterbank

mirframe

mirsegment

mirpeaks mirtempo

mirautocor

mirsummirframe

mirspectrum

mirsimatrix mirnovelty

*

The tempo can be estimated in various ways:

• mirtempo(..., ‘Autocor’) computes an autocorrelation function of the onset detection curve, 
using mirautocor (default choice). Options related to mirautocor can be specified:

• 'Enhanced’ (toggled on by default here),

• 'Resonance’ (set by default to ‘ToiviainenSnyder’),

• ‘NormalWindow’ (same default value).

• mirtempo(..., ‘Spectrum’) computes a spectral decomposition of the onset detection curve, 
using mirspectrum. Options related to mirspectum can be passed here as well: 

• 'ZeroPad’ (set by default here to 10 000 samples),

• 'Prod’ (same default, when toggled on, as for mirspectrum),

• 'Resonance’ either ‘ToiviainenSnyder’ (default value) or 0, ‘off’, or ‘no’.

• mirtempo(..., ‘Autocor’, ‘Spectrum’) combines both strategies: the autocorrelation function is 
translated into the frequency domain in order to be compared to the spectrum curve, and the 
two curves are subsequently multiplied.

Then a peak picking is applied to the autocorrelation function or to the spectrum representa-
tion. The parameters of the peak picking can be tuned.

• mirtempo(..., ‘Total’, m) selects not only the best tempo, but the m best tempos.

• mirtempo(..., ‘Min’, mi) indicates the lowest tempo taken into consideration, expressed in 
bpm. Default value: 40 bpm.

• mirtempo(..., ‘Max’, ma) indicates the highest tempo taken into consideration, expressed in 
bpm. Default value: 200 bpm.
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• mirtempo(..., ‘Contrast’, c) specifies the contrast factor for the peak picking. Default value: c = 
0.1

• mirtempo(..., ‘Nearest’, n) chooses the peak closest to n (in s.). Default value when option 
toggled on: n = 0.5 s.

mirtempo accepts as input data type either:

• mirautocor objects,

• mirspectrum objects,

• onset detection curve (resulting from mironsets), frame-decomposed or not, channel-
decomposed or not,

• and all the input data accepted by mironsets.

The onset detection curve computed in mironsets can be controlled using the following options:  

• ‘Envelope’ (default) and ‘DiffEnvelope’:

• with the ‘Method’ set by default to ‘Filter’:

• with ‘FilterType’ option with same default,

• with ‘Filterbank’ option set to 10 by default,

• with ‘FilterbankType’ option with same default,

• ‘Method’ can be set to ‘Spectro’ as well, and the 'Freq','Mel','Bark','Cents' selection can be 
specified, with same default.

• Besides ‘Method’: ‘HalfwaveCenter’, ‘HalfwaveDiff’, ‘Lambda’, ‘Center’, ‘Smooth’, 
‘Sampling’, ‘Log’ and ‘Mu’, all with same default and ‘Diff’ set to ‘On’ by default.

• ‘SpectralFlux’: with ‘Complex’, ‘Inc’, ‘Median’ and ‘Halfwave’ with same default.

•  and ‘Pitch’.

Other options related to mironsets can be specified:

• ‘Filterbank’, with same default value than for mironsets,

• ‘Frame’, with same default value than for mironsets,

• mironsets(..., 'Sum’, w) specifies when to sum the channels. Possible values:
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• w = 'Before’: sum before the autocorrelation or spectrum computation.

• w = 'A6er’: autocorrelation or spectrum computed for each band, and summed into a 
"summary".

• w = 0: tempo estimated for each band separately, with no channel recombination.

mirtempo can return several outputs:

1. the tempo itself (or set of tempi) and

2. the mirspectrum or  mirautocor data, where is highlighted the (set of) peak(s) corre-
sponding to the estimated tempo (or set of tempi).

E X A M P L E
The tempo estimation related to the ragtime example 

[t ac] = mirtempo(‘ragtime’)

leads to a tempo t = 129.1832 bpm and to the following autocorrelation curve ac:

The frame-decomposed tempo estimation related to the czardas example

[t ac] = mirtempo(‘czardas’, ‘Frame’)

leads to the following tempo curve t:

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8
Envelope autocorrelation

lag (s)

c
o

e
ff

ic
ie

n
ts

 

MIRtoolbox 1.3.2 User’s Manual" 94



0 2 4 6 8 10 12
50

100

150

200
Tempo

Temporal location of events (in s.)

c
o

e
ff

ic
ie

n
t 

v
a

lu
e

 (
in

 b
p

m
)

and the following autocorrelation frame decomposition ac:
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mirpulseclarity
When mirpulseclarity is used for academic research, please cite the following publication:

Olivier Lartillot, Tuomas Eerola, Petri Toiviainen, Jose Fornari, "Multi-feature modeling of 
pulse clarity: Design, validation, and optimization", International Conference on Music Information 
Retrieval, Philadelphia, 2008.

D E S C R I P T I O N
Estimates the rhythmic clarity, indicating the strength of the beats estimated by the mirtempo 
function.

F L O W C H A R T  I N T E R C O N N E C T I O N S

The pulse clarity can be estimated in various ways:

• mirpulseclarity(..., s) selects a particular heuristic for pulse clarity estimation. Most heuristics 
are based on the autocorrelation curve computed for tempo estimation (i.e., the second out-
put of mirtempo) (Lartillot, Eerola, Toiviainen, and Fornari, 2008):

• s = ‘MaxAutocor’ selects the maximum correlation value in the autocorrelation curve 
(default heuristic).

• s = ‘MinAutocor’ selects the minimum correlation value in the autocorrelation curve.

• s = ‘MeanPeaksAutocor’ averages the local maxima in the autocorrelation curve.

• s = ‘KurtosisAutocor’ computes the kurtosis of the autocorrelation curve.

• s = ‘EntropyAutocor’ computes the entropy of the autocorrelation curve.

• s = ‘InterfAutocor’ computes the harmonic relations between pulsations.

• s = ‘TempoAutocor’ selects the tempo related to the highest autocorrelation.

Others heuristics are based more simply on the onset curve itself: 
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• s = ‘Articulation’ estimates the average silence ratio of the onset curve (option ‘ASR’ in 
mirlowenergy.

• s = ‘Attack’ averages the attack slopes of all onsets (the ‘Diff’, ‘Gauss’ can be specified, 
with same default).

• s = ‘ExtremEnvelope’ estimates the total amplitude variability of the onset curve.

mirpulseclarity(..., ‘Model’, m) selects one out of two possible models that have been found as 
optimal in our experiments (Lartillot, Eerola, Toiviainen, and Fornari, 2008):

• m = 1 selects the default model with its associated weight.

• m = 2 selects the following model: ‘Gammatone’, no log, no ‘Resonance’, ‘Lambda’ set to .8, 
and ‘Sum’ set to ‘A6er’, with its associated weight.

• m = [1 2] sums the two models altogether.

The onset detection curve computed in mironsets can be controlled using the following options:  

• ‘Envelope’ (default) and ‘DiffEnvelope’:

• with the ‘Method’ set by default to ‘Spectro’, and the 'Freq','Mel','Bark','Cents' selec-
tion can be specified, with same default.

• ‘Method’ can be set to ‘Filter’ as well:

• with ‘FilterType’ option with same default,

• with ‘Filterbank’ option set to 20 by default,

• with ‘FilterbankType’ option set to ‘Scheirer’ by default,

• Besides ‘Method’: ‘HalfwaveDiff’, ‘Lambda’, ‘Smooth’, ‘Log’ with same default, and 
‘Mu’, set by default here to ‘On’.

• ‘SpectralFlux’: with ‘Inc’ with same default, and ‘Median’ and ‘Halfwave’ toggled off by 
default.

•  and ‘Pitch’.

The autocorrelation function performed in mirautocor can be controlled using the following 
options: 

• ‘Enhanced’ (toggled off by default; forced to ‘Off’ in ‘MinAutocor’), 

• ‘Resonance’, ‘Min’, ‘Max’ (with same default as in mirautocor).

Some further options operates as in mirtempo:
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• ‘Sum’,

• ‘Total’ (ignored in ‘MaxAutocor’, ‘MinAutocor‘ and ‘EntropyAutocor’ methods),

• ‘Contrast’: with a default value set to .01,

• ‘Frame’: if specified, set by default to 5 s and 10% hop.

mirpulseclarity accepts as input data type either:

• mirautocor objects,

• onset detection curve (resulting from mironsets), frame-decomposed or not, channel-
decomposed or not,

• and all the input data accepted by mironsets.

mirpulseclarity can return several outputs:

1. the pulse clarity value and

2. the mirautocor data that was used for the estimation of pulse clarity.
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3.3. Timbre

mirattacktime

D E S C R I P T I O N
The attack phase detected using the ‘Attacks’ option in mironsets can offer some timbral charac-
terizations. One simple way of describing the attack phase, proposed in mirattacktime, consists 
in estimating its temporal duration.
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mironsets

mirflux

mirsum

mirenvelope

miraudio

mirfilterbank

mirframe

mirsegment

mirpeaks

mirsimatrix mirnovelty

mirattacktime

‘Attack’

mirattacktime accepts as input data type either:

• onset detection curves (resulting from mironsets), already including peaks or not,

• and all the input data accepted by mironsets.

mirattacktime can return several outputs:

1. the attack time itself and

2. the onset detection curve returned by mironsets, including the detected onsets.

O P T I O N S
• mirattacktime(..., ‘Lin’) returns the duration in a linear scale (in seconds). (Default choice)

 

MIRtoolbox 1.3.2 User’s Manual" 99



• mirattacktime(..., ‘Log’) returns the duration in a log scale (Krimphoff et al., 1994).
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mirattackslope

D E S C R I P T I O N
Another description of the attack phase is related to its average slope.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mironsets

mirflux

mirsum

mirenvelope

miraudio

mirfilterbank

mirframe

mirsegment

mirpeaks

mirsimatrix mirnovelty

mirattackslope

‘Attack’
‘Contrast’, .05

mirattackslope accepts as input data type either:

• onset detection curves (resulting from mironsets),

• and all the input data accepted by mironsets.

The peak picking from the onset detection is performed in any case. Its ‘Contrast’ parameter 
can be specified. Its default value is the same as in mironsets, i.e., .05.

mirattackslope can return several outputs:

1. the attack slope itself and

2. the onset detection curve returned by mironsets, including the detected onsets.

O P T I O N S
• mirattackslope(x, meth) specifies the method for slope estimation. Possible values for meth are:

• meth = ‘Diff’ computes the slope as a ratio between the magnitude difference at the be-
ginning and the ending of the attack period, and the corresponding time difference. (De-
fault choice)
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• meth = ‘Gauss’ computes the average of the slope, weighted by a gaussian curve that em-
phasizes values at the middle of the attack period (similar to Peeters, 2004).
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mirzerocross

W A V E F O R M  S I G N - C H A N G E  R A T E
A simple indicator of noisiness consists in counting the number of times the signal crosses the 
X-axis (or, in other words, changes sign).
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirzerocross

mirframe

mirzerocross actually accepts any input data type (cf. section 4.2).

O P T I O N S
• mirzerocross(..., ‘Per’, p) precises the temporal reference for the rate computation. Possible val-

ues:

• p = ‘Second’: number of sign-changes per second (Default).

• p = ‘Sample’: number of sign-changes divided by the total  number of samples. The ‘Second’ 
option returns a result equal to the one returned by the ‘Sample’ option multiplied by the 
sampling rate.

• mirzerocross(..., ‘Dir’, d) precises the definition of sign change. Possible values:

• d = ‘One’: number of sign-changes from negative to positive only (or, equivalently, from 
positive to negative only). (Default)
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• d = 'Both': number of sign-changes in both ways. The 'Both' option returns a result equal to 
twice the one returned by the 'One’ option.
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mirrolloff

H I G H - F R E Q U E N C Y  E N E R G Y  ( I )
One way to estimate the amount of high frequency in the signal consists in finding the fre-
quency such that a certain fraction of the total energy is contained below that frequency. This 
ratio is fixed by default to .85 (following Tzanetakis and Cook, 2002), other have proposed .95 
(Pohle, Pampalk and Widmer, 2005).
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirrolloff

mirro!off accepts either:

• mirspectrum objects, or

• miraudio objects (same as for mirspectrum),

• file name or the ‘Folder’ keyword.

O P T I O N
mirro!off(..., 'Threshold’, p) specifies the energy threshold, as a percentage. Default value: .85
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mirbrightness

H I G H - F R E Q U E N C Y  E N E R G Y  ( I I )
A dual method consists in fixing this time the cut-off frequency, and measuring the amount of 
energy above that frequency (Juslin, 2000). The result is expressed as a number between 0 and 
1.
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirbrightness

mirbrightness accepts either:

• mirspectrum objects, or

• miraudio objects (same as for mirspectrum).

• file name or the ‘Folder’ keyword. 

O P T I O N S
mirbrightness(..., 'CutOff’, f) specifies the frequency cut-off, in Hz. Default value: 1500 Hz. The 
value 1000 Hz has been proposed in (Laukka, Juslin and Bresin, 2005), and the value of 3000 
Hz has been proposed in (Juslin, 2000).

 

MIRtoolbox 1.3.2 User’s Manual" 106



mirmfcc

M E L - F R E Q U E N C Y  C E P S T R A L  C O E F F I C I E N T S
MFCC offers a description of the spectral shape of the sound. We recall that the computation 
of the cepstrum followed the following scheme:

mirspectrum
(Fourier

transform)
Abs

(“Inverse”)
Fourier

transform
Logaudio

The computation of mel-frequency cepstral coefficients is highly similar:

mirspectrum
(Fourier

transform)
Abs Log (‘Mel’)

Discrete 
cosine 

transform

Here the frequency bands are positioned logarithmically (on the Mel scale) which approxi-
mates the human auditory system's response more closely than the linearly-spaced frequency 
bands. And the Fourier Transform is replaced by a Discrete Cosine Transform. A discrete co-
sine transform (DCT) is a Fourier-related transform similar to the discrete Fourier transform 
(DFT), but using only real numbers. It has a strong "energy compaction" property: most of the 
signal information tends to be concentrated in a few low-frequency components of the DCT. 
That is why by default only the first 13 components are returned.

By convention, the coefficient of rank zero simply indicates the average energy of the signal.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirmfcc

‘Mel’
‘Log’
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mirmfcc accepts either:

• mirspectrum objects, or

• miraudio objects (same as for mirspectrum),

• file name or the ‘Folder’ keyword.

mirmfcc can return several outputs:

• the mfcc coefficients themselves and

• the spectral representation (output of mirspectrum), in mel-band and log-scale.

O P T I O N S
• mirmfcc(..., 'Bands’, b) indicates the number of bands used in the mel-band spectrum decom-

position. By default, b = 40.

• mirmfcc(..., 'Rank’, N) computes the coefficients of rank(s) N. The default value is N = 1:13. 
Beware that the coefficient related to the average energy is by convention here of rank 0. 
This zero value can be included to the array N as well.

• If the output is frame-decomposed, showing the the temporal evolution of the MFCC along 
the successive frames, the temporal differentiation can be computed:

• mirmfcc(..., 'Delta’, d) performs temporal differentiations of order d of the coefficients, al-
so called delta-MFCC (for d = 1) or delta-delta-MFCC (for d = 2). By default, d = 1.

• mirmfcc(..., 'Radius’, r) specifies, for each frame, the number of successive and previous 
neighbouring frames taken into consideration for the least-square approximation used for 
the derivation. For a given radius r, the Delta operation for each frame i is computed by 
summing the MFCC coefficients at frame i+j (with j from -r to +r) , each coefficient being 
multiplied by its weight j. Usually the radius is equal to 1 or 2. Default value: r = 2.

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Rank’: the series of rank(s) taken into consideration (same as ‘Pos’),

• ‘Delta’: the number of times the delta operation has been performed.
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mirroughness

S E N S O R Y  D I S S O N A N C E
Plomp and Levelt (1965) has proposed an estimation of the sensory dissonance, or roughness, 
related to the beating phenomenon whenever pair of sinusoids are closed in frequency. The 
authors propose as a result an estimation of roughness depending on the frequency ratio of 
each pair of sinusoids represented as follows:

An estimation of the total roughness is available in mirroughness by computing the peaks of the 
spectrum, and taking the average of all the dissonance between all possible pairs of peaks 
(Sethares, 1998).

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrummirframe mirpeaks mirroughness

The ‘Contrast’ parameter associated to mirpeaks can be specified, and is set by default to .01

mirroughness accepts either:

• mirspectrum objects, where peaks have already been picked or not,

• miraudio objects: same as for mirspectrum, except that a frame decomposition is auto-
matically performed, with default frame length 50 ms and half overlapping. This default 
frame decomposition is due to the fact that roughness can only be associated to a spectral 
representation association to a short-term sound excerpt: there is no sensory dissonance pro-
voked by a pair of sinusoid significantly distant in time.  

• file name or the ‘Folder’ keyword.
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mirroughness can return several outputs:

1. the roughness value itself and

2. the spectral representation (output of mirspectrum) showing the picked peaks (returned 
by mirpeaks).

O P T I O N S

• mirroughness(..., m) specifies the method used:

• m = ‘Sethares’ (default): based on the summation of roughness between all pairs of sines 
(obtained through spectral peak-picking) (Sethares, 1998).

• m = ‘Vassilakis’: variant of ‘Sethares’ model with a more complex weighting (Vassilakis, 
2001, Eq. 6.23).
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mirregularity

S P E C T R A L  P E A K S  V A R I A B I L I T Y
The irregularity of a spectrum is the degree of variation of the successive peaks of the spec-
trum.

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirpeaks mirregularity
‘Reso’, ‘SemiTone’

The ‘Contrast’ parameter associated to mirpeaks can be specified, and is set by default to .01

mirregularity accepts either:

• mirspectrum objects, where peaks have already been picked or not,

• miraudio objects (same as for mirspectrum),

• file name or the ‘Folder’ keyword.

O P T I O N S

• mirregularity(..., 'Jensen’) is based on (Jensen, 1999), where the irregularity is the sum of the 
square of the difference in amplitude between adjoining partials.(Default approach)

Chapter 7. Spectral Envelope Model
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although in the log10 domain. In this paper, an alternative calculation of the irregularity is

used, where the irregularity is the sum of the square of the difference in amplitude between

adjoining partials,

irregularity = ( (ak ! ak+1)
2
)/ ak

2

k=1

N

"
k=1

N

" (7.16)

and the N+1 partial is supposed to be zero. The irregularity value calculated in this way is

most often, although not always, below 1. It is by definition always below 2.

Changing irregularity definitely changes the perceived timbre of the sound.

Irregularity changes the amplitude relations in the same tristimulus group. Since the

tristimulus 2 value is large, this is where irregularity has the greatest influence.

The change of irregularity translates therefore principally into a change in the ratio

between the second and the fourth partial amplitude. The third partial is fixed by the odd

value.

The spectral envelope for 4 different

values of the irregularity is shown in figure

7.7. The values of the brightness (5), the odd

(0.3), and the tristimulus 1 (0.25) and 2 (0.5)

are kept at the same value for all 4 plots. The

perceived effect of the different values of the

irregularity is rather big.
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Figure 7.7. Spectral Envelope for four different

irregularities, 0, 0.1, 0.4 and 0.7. Brightness=5,

tristimulus 1=0.25, tristimulus 2=0.5, odd=0.3.

7.3. Spectral Envelope Model

This section presents a method of recreating N synthetic amplitudes, whose form,

judged by the perceptual attributes, is similar to the original spectrum. The spectral

envelope is modeled by the attributes presented in section 7.2; brightness, tristimulus1,

tristimulus2, odd and irregularity. There are 5 attributes and N amplitudes. N is assumed to

be greater than 5. There is thus an infinity of solutions. To limit the number of solutions,

• mirregularity(..., 'Krimphoff’) is based on (Krimphoff et al., 1994), where the irregularity is 
the sum of the amplitude minus the mean of the preceding, same and next amplitude. 
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It is best plotted in a diagram where

tristimulus 2 is a function of tristimulus 3. In

such a diagram, the three corners of the low

left triangle denote strong fundamental, strong

mid-range, and strong high frequency partials.

The tristimulus diagram can be seen in figure

7.6 along with the tristimulus for four musical

instruments.

Notice that the sum of the three tristimulus

equals 1. It is necessary only to use 2 out of

the 3 tristimulus. Tristimulus 1 and 2 are

saved.
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Figure 7.6. Tristimulus values for four sounds.

7.2.4. Odd/Even Relation

The odd/even relation is well known from for instance, the lack of energy in the even

partials of the clarinet [Benade et al. 1988]. To avoid too much correlation between the

odd parameter and the tristimulus 1 parameter, the odd parameter is calculated from the

third partial,

odd = ( a2 k !1)/ ak

k=1

N

"
k =2

N / 2

" (7.13)

even = ( a2 k) / ak

k=1

N

"
k=1

N /2

" (7.14)

Since tristimulus 1 + odd + even equals 1, it is necessary only to save one of the two

relations. The odd parameter is saved.

7.2.5. Irregularity

Several studies have pointed at the importance of the irregularity of the spectrum

[Krimphoff et al. 1994]. Irregularity is defined in [Krimphoff et al. 1994] as the sum of the

amplitude minus the mean of the preceding, same and next amplitude,

irregularity = ak !
ak!1 + ak + ak+1

3k= 2

N !1

" (7.15)
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3.4. Pitch

mirpitch

P I T C H  E S T I M A T I O N
Extract pitches and return their frequencies in Hz.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirpitchmirpeaks

mirspectrum mircepstrum

mirautocor

mirsegment

mirfilterbank

miraudio

mirframe

mirsum

*

The pitch content can be estimated in various ways:

• mirpitch(..., ‘Autocor’) computes an autocorrelation function of the audio waveform, using 
mirautocor. This is the default strategy. Options related to mirautocor can be specified:

• 'Enhanced’, toggled on by default here,

• 'Compress’, set by default to .5,

• filterbank configuration can be specified: either ‘2Channels’, ‘Gammatone’ or ‘NoFilter-
bank’.

• mirpitch(..., ‘Spectrum’) computes the FFT spectrum (mirspectrum).

• mirpitch(..., ‘AutocorSpectrum’) computes the autocorrelation (mirautocor) of the FFT 
spectrum (mirspectrum).

• mirpitch(..., ‘Cepstrum’) computes the cepstrum (mircepstrum).

• These methods can be combined. In this case, the resulting representations (autocorrelation 
function or cepstral representations) are all expressed in the frequency domain and multi-
plied altogether.

Then a peak picking is applied to the autocorrelation function or to the cepstral representa-
tion. The parameters of the peak picking can be tuned.

• mirpitch(..., 'Total’, m) selects only the m best pitches.

• mirpitch(..., 'Mono’) only select the best pitch, corresponding hence to mirpitch(..., 'Total’, 1).
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• mirpitch(..., 'Min’, mi) indicates the lowest pitch taken into consideration, in Hz. Default 
value: 75 Hz, following a convention in the Praat software (Boersma & Weenink, 2005).

• mirpitch(..., 'Max’, ma) indicates the highest pitch taken into consideration, expressed in Hz. 
Default value: 2400 Hz, because there seem to be some problems with higher frequency, due 
probably to the absence of pre-whitening in our implementation of Tolonen and Karjalainen 
autocorrelation approach (used by default).

• mirpitch(..., 'Sum’, 0) toggles off the final summation of the channels before peak picking. 
The result is still decomposed into channels.

• mirpitch(..., 'Contrast’, c) specifies the contrast factor for the peak picking. Default value: c = 
0.1.

• mirpitch(..., 'Order’, o) specifies the ordering for the peak picking. Default value: o = ‘Ampli-
tude’.

mirpitch accepts as input data type either:

• mirpitch objects,

• output of mirpeaks computation,

• mirautocor objects,

• mircepstrum objects,

• mirspectrum objects,

• miraudio objects, where the audio waveform can be:

• segmented (using mirsegment), 

• when pitch is estimated by autocorrelating the audio waveform (‘Autocor’ strategy), the 
audio waveform is be default first decomposed into channels (cf. the ‘Filterbank’ option 
below),

• decomposed into frames or not, using mirframe, or the ‘Frame’ option, where the de-
fault frame length is .46.4 ms and the default hop length is 10 ms (Tolonen & Karjalainen 
2000);

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects.

mirpitch can return several outputs:
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1. the pitch frequencies themselves, and

2. the mirautocor or  mircepstrum data, where is highlighted the (set of) peak(s) corre-
sponding to the estimated pitch (or set of pitches).

P O S T - P R O C E S S I N G  O P T I O N S

• mirpitch(..., 'Median’, l) performs a median filtering of the pitch curve. The length of the 
median filter is given by l (in s.). Its default value is .1 s. The median filtering can only be ap-
plied to mono-pitch curve. If several pitches were extracted in each frame, a mono-pitch 
curve is first computed by selecting the best peak of each successive frame.

• mirpitch(..., 'Stable’, th, n) remove pitch values when the difference (or more precisely abso-
lute logarithmic quotient) with the n precedent frames exceeds the threshold th. 

• if th is not specified, the default value .1 is used.

• if n is not specified, the default value 3 is used.

• mirpitch(..., 'Reso’, 'SemiTone’) removes peaks whose distance to one or several higher peaks 
is lower than a given threshold 2^(1/12) (corresponding to a semitone).

P R E S E T  M O D E L  

• mirpitch(..., 'Tolonen’) implements (part of) the model proposed in (Tolonen & Karjalainen, 
2000). It is equivalent to 

mirpitch(..., 'Enhanced', 2:10, 'Generalized', .67, '2Channels')

E X A M P L E
[p ac] = mirpitch(‘ragtime', 'Frame')
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A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Amplitude’: the amplitude associated with each pitch component.

I M P O R T A T I O N  O F  P I T C H  D A T A
mirpitch(f, a, r) creates a mirpitch object based on the frequencies specified in f and the related 
amplitudes specified in a, using a frame sampling rate of r Hz (set by default to 100 Hz).

Both f and a can be either:

• a matrix where each column represent one pitch track and lines corresponds to frames,

• an array of cells, where each cell, representing one individual frame, contains a vector.
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mirmidi

A U T O M A T E D  T R A N S C R I P T I O N
Segments the audio into events, extracts pitches related to each event and attempts a conver-
sion of the result into a MIDI representation. 

The audio segmentation is based on the onset detection given by mironsets with the default pa-
rameter, but with the ‘Sum’ option toggled off in order to keep the channel decomposition of 
the input audio data.

The MIDI output is represented using the MIDI Toolbox note matrix representation. The dis-
played output is the piano-roll representation of the MIDI data, which requires MIDI Toolbox. 
Similarly, the result can be sonified using mirplay and saved using mirsave, once again with 
the help of MIDI Toolbox.

F L O W C H A R T  I N T E R C O N N E C T I O N S

miraudio

mironsets

mirsegment mirpitch mirmidi

‘Sum’, 0

The ‘Contrast’ parameter associated to mirpitch can be specified, and is set by default to .3
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mirinharmonicity

P A R T I A L S  N O N - M U L T I P L E  O F  F U N D A M E N T A L S
mirinharmonicity(x) estimates the inharmonicity, i.e., the amount of partials that are not mul-
tiples of the fundamental frequency, as a value between 0 and 1. More precisely, the inharmon-
icity considered here takes into account the amount of energy outside the ideal harmonic se-
ries.

For that purpose, we use a simple function estimating the inharmonicity of each frequency 
given the fundamental frequency f0:

f0 2*f0 3*f0 4*f0 5*f0
0 fi

WARNING: 

This simple model presupposes that there is only one fundamental frequency.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirpitchmirpeaks

mirspectrum

mirautocor

mirsegment

mirfilterbank

miraudio

mirframe

mirsum

mirinharmonicity

mircepstrum

f0‘Mono’

mirinharmonicity accepts as main input either:

• mirspectrum objects,

• miraudio objects (same as for mirspectrum),

• file name or the ‘Folder’ keyword.

mirinharmonicity can return several outputs:

1. the inharmonicity rate itself,

2. the mirspectrum data, and
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3. the fundamental frequency ‘f0’.

O P T I O N
mirinharmonicity(..., 'f0’, f) bases the computation of the inharmonicity on the fundamental fre-
quency indicated by f. The frequency data can be either a number, or a mirscalar object (for ins-
tance, the output of a mirpitch computation).

By default, the fundamental frequency is computed using the command:

f = mirpitch(..., 'Mono')
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3.5. Tonality

mirchromagram

E N E R G Y  D I S T R I B U T I O N  A L O N G  P I T C H E S
The chromagram, also called Harmonic Pitch Class Profile, shows the distribution of energy 
along the pitches or pitch classes.

• First the spectrum is computed in the logarithmic scale, with selection of, by default, the 20 
highest dB, and restriction to a certain frequency range that covers an integer number of oc-
taves, and normalization of the audio waveform before computation of the FFT.

s = mirspectrum(..., ‘dB’, 20, ‘Min’, fmin, ‘Max’, fmax, ‘NormalInput’,                               
‘MinRes’, r, ‘OctaveRatio’, .85)

• The minimal frequency fmin is specified by the ‘Min’ option (cf. below).

• The maximal frequency fmax is at least equal to the ‘Max’ option, but the frequency range 
is extended if necessary in order to obtain an integer number of octaves.

• The minimal frequency resolution of the spectrum is chosen such that even lowest chro-
mas will be segregated from the spectrum. It is based on the number of chromas per oc-
tave r (‘Res’ option , cf. below). Lowest frequencies are ignored if they do not meet this 
resolution constraint, and a warning message is sent by mirspectrum (cf. ‘OctaveRatio’ 
keyword).

• The chromagram is a redistribution of the spectrum energy along the different pitches (i.e., 
“chromas”):

c = mirchromagram(s, ‘Wrap’, ‘no’)
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• If the ‘Wrap’ option is selected, the representation is wrapped along the 12 pitch classes:

c = mirchromagram(c, ‘Wrap’, ‘yes’)

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirchromagram
‘dB’, 20

‘Min’, 100
‘Max’, fmax

‘NormalInput’
‘MinRes’, 12, 

‘OctaveRatio’, .85

The ‘Min’ and ‘Max’ range used in mirspectrum can be tuned directly in mirchromagram, as 
well as the ‘dB’ threshold (that can be written ‘Threshold’ as well). These parameters are set 
by default to Min = 100 Hz, Max = 5000 Hz (Gómez, 2006) and Threshold = 20 dB. However, it 
seems that the spectrum should span as closely as possible an integer number of octaves, in or-
der to avoid emphasizing particular pitches covered more often than others. Hence the higher 
limit of the frequency range of the spectrum computation is increased accordingly. Hence for 
the default parameters value (Min = 100 Hz, Max = 5000 Hz), the actual maximum frequency 
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fmax is set to 6400 Hz. The ‘MinRes’ value corresponds to the ‘Res’ chromagram resolution 
parameter, as explained in the option section below.

mirchromagram accepts either:

• mirspectrum objects,

• miraudio objects , where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of 200 ms and a hop factor of 
.05),

• file name or the ‘Folder’ keyword.

O P T I O N S

• c = mirchromagram(..., ‘Tuning’, t) specifies the frequency (in Hz.) associated to  chroma C. 
Default value, t = 261.6256 Hz.

• c = mirchromagram(..., ‘Triangle’) weights the contribution of each frequency with respect to 
the distance with the actual frequency of the corresponding chroma.

• c = mirchromagram(..., 'Weight’, o) specifies the relative radius of the weighting window, with 
respect to the distance between frequencies of successive chromas.

• o = 1: each window begins at the centers of the previous one.

• o = .5: each window begins at the end of the previous one. (default value)

• c = mirchromagram(..., ‘Res’, r) indicates the resolution of the chromagram in number of bins 
per octave. Default value, r = 12.

P O S T - P R O C E S S I N G  O P E R A T I O N S

• c = mirchromagram(..., 'Wrap’, w) specifies whether the chromagram is wrapped or not.

• w = ‘yes’: groups all the pitches belonging to same pitch classes (default value)

• w = ‘no’: pitches are considered as absolute values.

• c = mirchromagram(..., 'Center’) centers the result.

• c = mirchromagram(..., 'Normal’, n) normalizes the result, using the n-norm. The default value 
is n = Inf, corresponding to a normalization by the maximum value. n = 0 toggles off the 
normalization. Alternative keyword: ‘Norm’.

• c = mirchromagram(..., 'Pitch’, p) specifies how to label chromas in the figures.
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• p = ‘yes’: chromas are labeled using pitch names (default)

• p = ‘no’: chromas are labeled using MIDI pitch numbers.

E X A M P L E
mirchromagram(‘ragtime’, ‘Frame’)

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Magnitude’: same as ‘Data’,

• ‘Chroma’: the chroma related to each magnitude (same as ‘Pos’),

• ‘ChromaClass’: the chroma class (‘A’, ‘A#’, ‘B’, etc.) related to each chroma,

• ‘ChromaFreq’: the central frequency of each chroma, in the unwrapped representation,

• ‘Register’: the octave position,

• ‘PitchLabel’: whether the chroma are represented as simple numeric positions (0), or as 
couples (ChromaClass, Register) (1).

• ‘Wrap’: whether the chromagram is represented along all possible chromas (0), or along the 
12 chroma-classes only (1).
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mirkeystrength

P R O B A B I L I T Y  O F  K E Y  C A N D I D A T E S
mirkeystrength computes the key strength, i.e., the probability associated with each possible key 
candidate, through a cross-correlation of the chromagram returned by mirchromagram, wrapped 
and normalized (using the ‘Normal’ option), with similar profiles representing all the possible 
tonality candidates (Krumhansl, 1990; Gomez, 2006).

C# minor

C major

C# major

D major

C minor

D minor

Cross-Correlations

The resulting graph indicate the cross-correlation score for each different tonality candidate.

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirchromagram mirkeystrength
‘Wrap’

‘Normal’
‘Weight’, .5
‘Triangle’

For the moment, only the ‘Weight’ and ‘Triangle’ options used in mirchromagram can be 
tuned directly in mirkeystrength.
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mirkeystrength accepts either:

• mirchromagram objects,

• mirspectrum objects,

• miraudio objects (same as for mirchromagram),

• file name or the ‘Folder’ keyword.

mirkeystrength can return several outputs:

1. the key strength itself, and

2. the mirchromagram data.

E X A M P L E
mirkeystrength(‘ragtime’, ‘Frame’)

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Strength’: the key strength value for each key and each temporal position (same as ‘Data’). 
The resulting matrix is distributed along two layers along the fourth dimension: a first layer 
for major keys, and a second layer for minor keys.

• ‘Tonic’: the different key centres (same as ‘Pos’).
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mirkey

D E S C R I P T I O N
Gives a broad estimation of tonal center positions and their respective clarity.

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirchromagram mirkeystrength mirpeaks mirkey

It consists simply of a peak picking in the mirkeystrength curve(s). Two options of mirpeaks are 
accessible from mirkey:

• ‘Total’, set to 1

• ‘Contrast’, set to .1

The ‘Weight’ and ‘Triangle’ options used in mirchromagram can be changed directly in 
mirkeystrength.

mirkey accepts either:

• mirkeystrength objects, where peaks have been already extracted or not,

• mirchromagram objects,

• mirspectrum objects,

• miraudio objects , where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of 1 s and half overlapping),

• file name or the ‘Folder’ keyword.

mirkey can return several outputs:

1. the best key(s), i.e., the peak abscissa(e);

2. the key clarity: i.e., the key strength associated to the best key(s), i.e., the peak ordinate(s);
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3. the mirkeystrength data including the picked peaks (mirpeaks).

E X A M P L E
[k c s] = mirkey(‘ragtime', 'Frame')
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mirmode

D E S C R I P T I O N
Estimate the modality, i.e. major vs. minor, returned as a numerical value: the more it is higher 
than 0, the more major the given excerpt is predicted to be, the more the value is lower than 0, 
the more minor the excerpt might be.

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirchromagram mirkeystrength mirmode

mirmode accepts either:

• mirkeystrength objects, where peaks have been already extracted or not,

• mirchromagram objects,

• mirspectrum objects,

• miraudio objects (same as for mirkey) or

• file name or the ‘Folder’ keyword.

mirmode can return several outputs:

1. modality itself, and

2. the mirkeystrength result used for the computation of modality.

S T R A T E G I E S

• mirkeystrength(..., ‘Best’) computes the key strength difference between the best major key 
and the best minor key. (default choice)

 

MIRtoolbox 1.3.2 User’s Manual" 127



• mirkeystrength(..., ‘Sum’) computes the key strength difference between all the major keys and 
their relative minor keys.
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mirkeysom

D E S C R I P T I O N
Projects the chromagram (normalized using the ‘Normal’ option) into a self-organizing map 
trained with the Krumhansl-Kessler profiles (modified for chromagrams) (Toiviainen and 
Krumhansl, 2003; Krumhansl, 1990).

The result is displayed as a pseudo-color map, where colors correspond to Pearson correlation 
values. In case of frame decomposition, the projection maps are shown one after the other in 
an animated figure.

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirchromagram mirkeysom
‘Normal’

mirkeysom accepts either:

• mirchromagram objects,

• mirspectrum objects,

• miraudio objects , where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of 1 s and half overlapping),

• file name or the ‘Folder’ keyword.

E X A M P L E
mirkeysom(‘ragtime’)
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A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Weight’: the projection value associated to each map location (same as ‘Data’).
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mirtonalcentroid

D E S C R I P T I O N
Calculates the 6-dimensional tonal centroid vector from the chromagram. It corresponds to a 
projection of the chords along circles of fifths, of minor thirds, and of major thirds (Harte and 
Sandler, 2006).

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrum

mirframe

mirchromagram mirtonalcentroid

mirtonalcentroid accepts either:

• mirchromagram objects,

• mirspectrum objects,

• miraudio objects , where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank), and/or decomposed into frames (using mir-
frame or the ‘Frame’ option, with by default a frame length of .743 s and a hop factor of .1),

• file name or the ‘Folder’ keyword.

mirtonalcentroid can return several outputs:

1. the tonal centroid itself, and

2. the mirchromagram data.

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Dimensions’: the index of the 6 dimensions (same as ‘Pos’),

• ‘Positions’: the position of each data within the 6-dimensional space (same as ‘Data’).
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mirhcdf

D E S C R I P T I O N
The Harmonic Change Detection Function (HCDF) is the flux of the tonal centroid (Harte 
and Sandler, 2006).

F L O W C H A R T  I N T E R C O N N E C T I O N S
mirfilterbank

mirsegment

miraudio mirspectrummirframe mirchromagram mirtonalcentroid mirflux mirhcdf

mirhcdf accepts either:

• mirtonalcentroid frame-decomposed objects,

• mirchromagram frame-decomposed objects,

• mirspectrum frame-decomposed objects,

• miraudio objects , where the audio waveform can be segmented (using mirsegment), de-
composed into channels (using mirfilterbank). If not decomposed yet, it is decomposed 
into frames (using the ‘Frame’ option, with by default a frame length of .743 s and a hop fac-
tor of .1),

• file name or the ‘Folder’ keyword.
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mirsegment(..., ‘HCDF’)
Peak detection applied to the HCDF returns the temporal position of tonal discontinuities 
that can be used for the actual segmentation of the audio sequence.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsegment

mirfilterbank

miraudio mirspectrummirframe mirchromagram mirtonalcentroid mirflux mirhcdf

mirsegment accepts uniquely as main input a miraudio objects not frame-decomposed, not 
channel decomposed, and not already segmented. Alternatively, file name or the ‘Folder’ key-
word can be used as well.

mirsegment(..., ‘HCDF’) can return several outputs:

1. the segmented audio waveform itself,

2. the HCDF (mirhcdf) after peak picking (mirpeaks),

3. the tonal centroid (mirtonalcentroid), and

4. the chromagram (mirchromagram).
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4.  HIGH -LEVEL FEATURES
4.1. Structure and form

More elaborate tools have also been implemented that can carry out higher-level analyses and 
transformations. In particular, audio files can be automatically segmented into a series of ho-
mogeneous sections, through the estimation of temporal discontinuities along diverse alterna-
tive features such as timbre in particular (Foote and Cooper, 2003).

mirsimatrix

D E S C R I P T I O N
A similarity matrix shows the similarity between all all possible pairs of frames from the input 
data. 

Dissimilarity matrix
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsimatrix

miraudio

mirspectrum

mircepstrum

mirautocor

mirfilterbank

mirsegment

mirchromagram mirkeystrength

mirframe mirmfcc

mirsum

mirtonalcentroid

mirsimatrix usually accepts either:

• mirspectrum frame-decomposed objects.

• miraudio objects: in this case, the (dis)similarity matrix will be based on the spectrogram 
(mirspectrum). The audio waveform is decomposed into frames if it was not decomposed 
yet, and the default frame parameters – frame length of 50 ms and no overlapping – can be 
changed using the ‘Frame’ option.

If the audio waveform is segmented (with mirsegment), the similarities are not computed be-
tween frames but on the contrary between segments, using Kullback-Leibler distance (Foote 
and Cooper, 2003).

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects;

• mirautocor frame-decomposed objects;

• mircepstrum frame-decomposed objects;

• mirmfcc frame-decomposed objects;

• mirchromagram frame-decomposed objects;

• mirkeystrength frame-decomposed objects;

• a Matlab square matrix: in this case, a mirsimatrix object is created based on the matrix given 
as input, with the following options:

• The frame rate used for the matrix can be specified as second input of mirsimatrix. By de-
fault, it is set to 20 Hz. 
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• The input is supposed to be a similarity matrix already. If the input is in fact a dissimilarity 
matrix, the keyword ‘Dissimilarity’ should be added as third argument of mirsimatrix.

O P T I O N S
• mirsimatrix(..., 'Distance’, f) specifies the name of a distance function, from those proposed 

in the Statistics Toolbox (help pdist). default value: f = 'cosine'

• mirsimatrix(..., 'Width’, w) specifies the size of the diagonal bandwidth, in samples, outside 
which the dissimilarity will not be computed. If w is even, the actual width is w-1 samples. If 
w = inf (default value), all the matrix will be computed. 

• mirsimatrix(..., 'Dissimilarity’) return the dissimilarity matrix, which is the intermediary re-
sult before the computation of the similarity matrix. It shows the distance between each pos-
sible frame.

• mirsimatrix(..., 'Similarity’, f) indicates the function f specifying the way the distance values 
in the dissimilarity matrix are transformed into the values of the similarity matrix. default 
value: f = 'exponential' corresponding to

f(x) = exp(-x)
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• mirsimatrix(..., 'Horizontal’) rotates the matrix 45° in order to make the first diagonal hori-
zontal:

• mirsimatrix(..., 'Horizontal’, ‘Width’, w) enables to restrict to a diagonal bandwidth only.
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mirsimatrix(..., ‘Width’, 20, ‘Horizontal’)

• mirsimatrix(..., 'TimeLag’) computes the time-lag matrix out of the (non-rotated) initial time-
time matrix:

• mirsimatrix(..., 'TimeLag’, ‘Width’, w) enables to restrict to a diagonal bandwidth only:
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mirsimatrix(..., ‘Width’, 20, ‘TimeLag’)

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific field:

• ‘DiagWidth’: the chosen value for the ‘Width’ parametre.

Similarity matrix
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mirnovelty

N O V E L T Y  C U R V E
Convolution along the main diagonal of the similarity matrix using a Gaussian checkerboard 
kernel yields a novelty curve that indicates the temporal locations of significant textural 
changes.

Similarity matrix
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F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsimatrix

miraudio

mirspectrum

mircepstrum

mirautocor

mirfilterbank

mirsegment

mirchromagram mirkeystrength

mirframe mirmfcc

mirsum

mirnovelty

‘Similarity’, ‘Exponential’
‘Width’, 128
‘TimeLag’

mirtonalcentroid

Some parameters related to mirsimatrix are accessible in mirnovelty:

• ‘Distance’, 

• ‘Similarity’ (set here to the default value ‘exponential’), 

• ‘Width’ (can also be called ‘KernelSize’), with the default value here 128 samples,

• ‘Horizontal’, instead of the default ‘TimeLag’.
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mirnovelty usually accepts either:

• mirsimatrix objects,

• mirspectrum frame-decomposed objects,

• miraudio objects (same as for mirsimatrix).

• file name or the ‘Folder’ keyword: same behavior than for miraudio objects;

• mirautocor frame-decomposed objects;

• mircepstrum frame-decomposed objects;

• mirmfcc frame-decomposed objects;

• mirchromagram frame-decomposed objects;

• mirkeystrength frame-decomposed objects.

mirnovelty can return several outputs:

1. the novelty curve itself, and

2. the similarity matrix (mirsimatrix), horizontal.

P O S T - P R O C E S S I N G  O P E R A T I O N

• mirnovelty(..., 'Normal’, n) toggles on/off the normalization of the novelty curve between the 
values 0 and 1. Toggled on by default.

E X A M P L E
Novelty curve computed using increasing kernel size ‘KernelSize’: 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

Temporal location of frames (in s.)

c
o
e
ff
ic

ie
n
t 
v
a
lu

e
 (

in
 ) Novelty

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

Temporal location of frames (in s.)

c
o
e
ff
ic

ie
n
t 
v
a
lu

e
 (

in
 ) Novelty

 

MIRtoolbox 1.3.2 User’s Manual" 141



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

Temporal location of frames (in s.)

c
o
e
ff
ic

ie
n
t 
v
a
lu

e
 (

in
 ) Novelty

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

Temporal location of frames (in s.)

c
o
e
ff
ic

ie
n
t 
v
a
lu

e
 (

in
 ) Novelty

 

MIRtoolbox 1.3.2 User’s Manual" 142



mirsegment(..., ‘Novelty’)
Peak detection applied to the novelty curve returns the temporal position of feature disconti-
nuities that can be used for the actual segmentation of the audio sequence.

The ‘Novelty’ keyword is actually not necessary, as this strategy is chosen by default in mirseg-
ment.

F L O W C H A R T  I N T E R C O N N E C T I O N S

mirsimatrix

miraudio

mirspectrum

mircepstrum

mirautocor

mirsegment

mirchromagram mirkeystrength

mirfilterbank

mirframe mirmfcc

mirsum

mirnovelty mirpeaks

mirtonalcentroid

Some parameters related to mirnovelty are accessible in mirsegment: ‘Distance’, ‘Measure’ 
and ‘KernelSize’. Some parameters related to mirpeaks are accessible in mirsegment: ‘Total’ 
(set by default to Inf) and ‘Contrast’ (set to .1).

The choice of the feature used for the similarity matrix computation can be specified:

• mirsegment(..., ‘Spectrum’) will compute a mirspectrum, where some parameters can be 
specified: ‘Min’, ‘Max’, ‘Normal’, ‘Window’, ‘Bark’, ‘Mel’. The default frame length is 50 ms and 
no overlapping.

• mirsegment(..., ‘MFCC’) will compute a mirmfcc, where the ‘Rank’ parameter can be speci-
fied. Same default frame parameters than for ‘Spectrum’.

• mirsegment(..., ‘KeyStrength’) will compute a mirkeystrength. The default frame length is 
500 ms and a hop factor of .2

• mirsegment(..., ‘Pitch’) ou mirsegment(..., ‘AucotorPitch’) will compute a  mirpitch operation 
and use its second output, i.e., the mirautocor, for the computation of the similarity matrix. 
The default frame length is 50 ms and a hop factor of .01

• If no feature is specified, the default feature used in mirsimatrix will be chosen, i.e., the spec-
trum (mirspectrum).
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The default frame parameters can be changed using the ‘WinLength’ option (in second) and the 
‘Hop’ option (a value between 0 and 1).

mirsegment accepts uniquely as main input a miraudio objects not frame-decomposed, not 
channel decomposed, and not already segmented. Alternatively, file name or the ‘Folder’ key-
word can be used as well.

mirsegment(..., ‘Novelty’) can return several outputs:

1. the segmented audio waveform itself,

2. the novelty curve (mirnovelty) after peak picking (mirpeaks),

3. the similarity matrix (mirsimatrix), and

4. the features entered into the mirsimatrix operator.
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4.2. Statistics

mirmean

D E S C R I P T I O N
mirmean(f) returns the mean along frames of the feature f.

f can be a structure array composed of features. In this case, the output will be structured the 
same way.

mirstd

D E S C R I P T I O N
mirmean(f) returns the standard deviation along frames of the feature f.

f can be a structure array composed of features. In this case, the output will be structured the 
same way.
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mirstat

D E S C R I P T I O N
mirstat can be applied to any object and will return its statistics in a structure array.

• If the object is frame-decomposed, the fields of the output are:

• Mean: the average along frames;

• Std: the standard deviation along frames;

• Slope: the linear slope of the trend along frames, i.e. the derivative of the line that would 
best fit the curve. The slope S is computed in a normalised representation of the curve C 
– i.e., centered, with unit variance, and with a temporal scale reduced to a series T of va-
lues between 0 and 1 – as a solution in a least-square sense of the equation S*T = C;

• PeriodFreq: the frequency (in Hz.) of the maximal periodicity detected in the frame-by-
frame evolution of the values, estimated through the computation of the autocorrelation 
sequence. The first descending slope starting from zero lag is removed from this analysis, 
as it is not related to the periodicity of the curve. If no periodicity is detected – i.e., if 
there is absolutely no peak in the autocorrelation sequence –, NaN is returned;

• PeriodAmp: the normalized amplitude of that main periodicity, i.e., such that the autocor-
relation at zero lag is identically 1.0.

• PeriodEntropy: the Shannon entropy of the autocorrelation function (cf. mirentropy).

• If the object is not frame-decomposed, the data itself is returned directly in the single field 
Mean.

An additional field FileNames indicates the file name following the same order used when dis-
playing each numerical result.

N A N - F I L T E R
mirstat automatically discard any NaN value contained in the input data.

M A N A G E M E N T  O F  S T R U C T U R E  A R R A Y S
If the input is already a structure array, the output will follows the same field decomposition 
(and all subfields as well) of the structure array, and will replace each final node with its corres-
ponding mirstat structure array result. 

 

MIRtoolbox 1.3.2 User’s Manual" 146



mirhisto

D E S C R I P T I O N
mirhisto can be applied to any object and will return its corresponding histogram. The data is 
binned into equally spaced containers.
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O P T I O N S

• mirhisto(..., 'Number’, n) specifies the number of containers. Default value : n = 10.

• mirhisto(..., 'Ampli’) adds the amplitude of the elements, instead of simply counting then.

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Weight’: the number of elements associated to each container (same as ‘Data’),

• ‘Bins’: the range of value associated to each bin (same as ‘Pos’). A first layer of values (along 
the third matrix dimension) indicates the minimal value for each bin, a second layer indicates 
the maximal values.
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mirzerocross

D E S C R I P T I O N
mirzerocross counts the number of times the signal crosses the X-axis (or, in other words, 
changes sign). 

This function has already defined in as : applied directly to audio waveform, mirzerocross is an 
indicator of noisiness.

But actually mirzerocross accepts any input data type.
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O P T I O N S
• mirzerocross(..., ‘Per’, p) precises the temporal reference for the rate computation. Possible val-

ues:

• p = 'Second': number of sign-changes per second (Default).

• p = 'Sample': number of sign-changes divided by the total  number of samples. The 'Second’ 
option returns a result equal to the one returned by the 'Sample’ option multiplied by the 
sampling rate.

• mirzerocross(..., 'Dir’, d) precises the definition of sign change. Possible values:

• d = 'One': number of sign-changes from negative to positive only (or, equivalently, from 
positive to negative only). (Default)

• d = 'Both': number of sign-changes in both ways. The 'Both' option returns a result equal to 
twice the one returned by the 'One’ option.
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mircentroid

D E S C R I P T I O N
mircentroid returns the centroid of the data.

E X P L A N A T I O N
An important and useful description of the shape of a distribution can be obtained through 
the use of its moments. The first moment, called the mean, is the geometric center (centroid) of 
the distribution and is a measure of central tendency for the random variable.

µ1 =
�

xf(x)dx

µ1

I N P U T S
Any data can be used as input.

If the input is an audio waveform, a file name, or the ‘Folder’ keyword, the centroid is computed 
on the spectrum (spectral centroid).

If the input is a series of peak lobes produced by mirpeaks(..., ‘Extract’), the centroid will be 
computed for each of these lobes separately.

O P T I O N

• When the input contains peaks (using mirpeaks), mircentroid(..., ‘Peaks’, i) will compute the 
centroids of the distribution of peaks. The argument i accepts two arguments:

• i = ‘NoInterpol’: the centroid is computed on the non-interpolated peaks (default choice),

• i = ‘Interpol’: the centroid is computed on the interpolated peaks (cf. ‘Interpol’ option in 
mirpeaks).
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mirspread

D E S C R I P T I O N
mirspread returns the standard deviation of the data.

E X P L A N A T I O N
The second central moment, called the variance, is usually given the symbol sigma squared and is 
defined as:

σ2 = µ2 =
�

(x− µ1)2f(x)dx

µ1

Being the squared deviation of the random variable from its mean value, the variance is always 
positive and is a measure of the dispersion or spread of the distribution. The square root of the 
variance is called the standard deviation, and is more useful in describing the nature of the dis-
tribution since it has the same units as the random variable. (Koch)

I N P U T S
Any data can be used as input.

If the input is an audio waveform, a file name, or the ‘Folder’ keyword, the spread is computed 
on the spectrum (spectral spread).

If the input is a series of peak lobes produced by mirpeaks(..., ‘Extract’), the spread will be com-
puted for each of these lobes separately.
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mirskewness

D E S C R I P T I O N
mirskewness returns the coefficient of skewness of the data.

E X P L A N A T I O N
The third central moment is called the skewness and is a measure of the symmetry of the distribu-
tion. The skewness can have a positive value in which case the distribution is said to be posi-
tively skewed with a few values much larger than the mean and therefore a long tail to the 
right. A negatively skewed distribution has a longer tail to the left. A symmetrical distribution 
has a skewness of zero. (Koch)

µ3 =
�

(x− µ1)3f(x)dx

The coefficient of skewness is the ratio of the skewness to the standard deviation raised to the 
third power.

µ3

σ3

The coefficient of skewness has more convenient units than does the skewness and often 
ranges from -3.0 to 3.0 for data from natural systems. Again, a symmetrical distribution has a 
coefficient of skewness of zero. A positive coefficient of skewness often indicates that the dis-
tribution exhibits a concentration of mass toward the left and a long tail to the right whereas a 
negative value generally indicates the opposite. (Koch)

< 0 > 0-3 +3

I N P U T S
Any data can be used as input.

If the input is an audio waveform, a file name, or the ‘Folder’ keyword, the skewness is compu-
ted on the spectrum (spectral skewness).
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If the input is a series of peak lobes produced by mirpeaks(..., ‘Extract’), the skewness will be 
computed for each of these lobes separately.
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mirkurtosis

D E S C R I P T I O N
mirkurtosis returns the (excess) kurtosis, of the data.

E X P L A N A T I O N
The fourth standardized moment is defined as,

µ4

σ4
− 3

Kurtosis is more commonly defined as the fourth cumulant divided by the square of the vari-
ance of the probability distribution, equivalent to:

µ4

σ4
− 3

which is known as excess kurtosis. The "minus 3" at the end of this formula is often explained as 
a correction to make the kurtosis of the normal distribution equal to zero. Another reason can 
be seen by looking at the formula for the kurtosis of the sum of random variables. Because of 
the use of the cumulant, if Y is the sum of n independent random variables, all with the same 
distribution as X, then Kurt[Y] = Kurt[X] / n, while the formula would be more complicated if 
kurtosis were simply defined as fourth standardized moment. (Wikipedia)

< 0 > 00-2

I N P U T S
Any data can be used as input.

If the input is an audio waveform, a file name, or the ‘Folder’ keyword, the kurtosis is computed 
on the spectrum (spectral kurtosis).

If the input is a series of peak lobes produced by mirpeaks(..., ‘Extract’), the kurtosis will be 
computed for each of these lobes separately.
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mirflatness

D E S C R I P T I O N
mirflatness returns the flatness of the data.

E X P L A N A T I O N
The flatness indicates whether the distribution is smooth or spiky, and results from the simple 
ratio between the geometric mean and the arithmetic mean:

N

��N−1
n=0 x(n)

�PN−1
n=0 x(n)

N

�

I N P U T S
Any data can be used as input.

If the input is an audio waveform, a file name, or the ‘Folder’ keyword, the flatness is computed 
on the spectrum (spectral flatness).
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mirentropy

D E S C R I P T I O N
mirentropy returns the relative Shannon (1948) entropy of the input. The Shannon entropy, used 
in information theory, is based on the following equation:

where b is the base of the logarithm.

In order to obtain a measure of entropy that is independent on the sequence length, mirentropy 
actually returns the relative entropy, computed as follows:

H(p) = -sum(p.*log(p)) /log(length(p));

Shannon entropy offers a general description of the input curve p, and indicates in particular 
whether it contains predominant peaks or not. Indeed, if the curve is extremely flat, corres-
ponding to a situation of maximum uncertainty concerning the output of the random variable 
X of probability mass function p(xi), then the entropy is maximal. Reversely, if the curve dis-
plays only one very sharp peak, above a flat and low background, then the entropy is minimal, 
indicating a situation of minimum uncertainty as the output will be entirely governed by that 
peak.

The equation of Shannon entropy can only be applied to functions p(xi) that follow the charac-
teristics of a probability mass function: all the values must be non-negative and sum up to 1. 
Inputs of mirentropy are transformed in order to respect these constraints:

• The non-negative values are replaced by zeros (i.e., half-wave rectification).

• The remaining data is scaled such that it sums up to 1.

I N P U T S
Any data can be used as input.

If the input is an audio waveform, a file name, or the ‘Folder’ keyword, the entropy is computed 
on the spectrum (spectral entropy).

O P T I O N
• mirentropy(..., ‘Center’) centers the input data before half-wave rectification.
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mirfeatures

D E S C R I P T I O N
mirfeatures computes a large set of features, and returns them in a structure array. If the result 
is stored in a variable f, for instance, then the features are organized as follows:

• in a dynamics field,

• f.dynamics.rms{1}: the frame-based RMS (mirrms), that can be accessed using the com-
mand:

• in a rhythm field,

• a fluctuation field, containing:

• f.rhythm.fluctuation.peak{1}: a fluctuation summary (mirfluctuation) with its highest 
peak (mirpeak),

• f.rhythm.fluctuation.centroid{1}: the centroid (mircentroid) of the fluctuation summary;

• a tempo field, containing:

• f.rhythm.tempo{1}: a frame-based tempo estimation (mirtempo),

• f.rhythm.tempo{2}: the autocorrelation function used for the tempo estimation;

• an attack field, containing:

• a time field, with:

• f.rhythm.attack.time{1}: the attack times (mirattacktime) of the onsets,

• f.rhythm.attack.time{2}: the envelope curve used for the onset detection (mironsets);

• a slope field, with:

• f.rhythm.attack.slope{1}: the attack slopes (mirattackslope) of the onsets;

• in a timbre field,

• f.timbre.zerocross{1}: the frame-decomposed zero-crossing rate (mirzerocross),

• f.timbre.centroid{1}: the frame-decomposed spectral centroid (mircentroid),

• f.timbre.brightness{1}: the frame-decomposed brightness (mirbrightness),

• f.timbre.spread{1}: the frame-decomposed spectral spread (mirspread),

• f.timbre.skewness{1}: the frame-decomposed spectral skewness (mirskewness),
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• f.timbre.kurtosis{1}: the frame-decomposed spectral kurtosis (mirkurtosis),

• f.timbre.ro!off95{1}: the frame-decomposed roll-off (mirro!off), using a 95 % threshold,

• f.timbre.ro!off85{1}: the frame-decomposed roll-off, using a 85 % threshold,

• f.timbre.spectentropy{1}: the frame-decomposed spectral entropy (mirentropy),

• f.timbre.flatness{1}: the frame-decomposed spectral flatness (mirflatness),

• a roughness field, containing:

• f.timbre.roughness{1}: the frame-decomposed roughness (mirroughness),

• f.timbre.roughness{2}: the spectrogram, containing the peaks used for the roughness es-
timation;

• an irregularity field, containing:

• f.timbre.irregularity{1}: the frame-decomposed irregularity (mirregularity),

• f.timbre.irregularity{2}: the spectrogram, containing the peaks used for the irregularity 
estimation;

• an inharmonicity field, containing:

• f.timbre.inharmonicity{1}: the frame-decomposed inharmonicity (mirinharmonicity),

• f.timbre.inharmonicity{2}: the spectrogram used for the inharmonicity estimation;

• f.timbre.mfcc{1}: the frame-decomposed MFCCs (mirmfcc),

• f.timbre.dmfcc{1}: the frame-decomposed delta-MFCCs,

• f.timbre.ddmfcc{1}: the frame-decomposed delta-delta-MFCCs,

• a lowenergy field, containing:

• f.timbre.lowenergy{1}: the low energy rate (mirlowenergy),

• f.timbre.lowenergy{2}: the RMS energy curve used for the low energy rate estimation;

• f.spectralflux{1}: the frame-decomposed spectral flux (mirflux);

• in a pitch field,

• f.pitch.salient{1}: the frame-decomposed pitches (mirpitch),

• a chromagram field, containing:
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• f.pitch.chromagram.peak{1}: an unwrapped chromagram (mirchromagram) and its highest 
peak,

• f.pitch.chromagram.centroid{1} field: the centroid of the chromagram;

• in a tonal field,

• f.tonal.keyclarity{1}: the frame-decomposed key clarity (second output of mirkey),

• f.tonal.mode{1}: the frame-decomposed mode (mirmode),

• f.tonal.hcdf{1}: the frame-decomposed HCDF (mirhcdf).

O P T I O N
• mirfeatures(..., ‘Stat’) returns the statistics of the features instead of the complete features 

themselves. In this way, the complete results are not accumulated in the RAM, preventing 
memory shortage problems. 

• mirfeatures(..., ‘Segment’, t) segments the audio sequence at the temporal positions indicated 
in the array t (in s.), and analyzes each segment separately.
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mirmap
When mirmap is used for academic research, please cite the following publications:

Olivier Lartillot, Tuomas Eerola, Petri Toiviainen, Jose Fornari, "Multi-feature modeling of 
pulse clarity: Design, validation, and optimization", International Conference on Music Information 
Retrieval, Philadelphia, 2008.

D E S C R I P T I O N
mirmap(predictors_file, ratings_file) performs a statistical mapping between ratings associated to a 
set of audio recordings, and a set of variables computed for the same set of audio recordings. It 
might be useful in particular when the set of predictors is large and diverse.

• The predictors were saved in one or several text file(s) whose name predictors_file (or a cell 
array of file name) is given as first argument of the mirmap function. This text file is the result 
of the exportation (using mirexport) of a chosen analysis performed using MIRtoolbox, on the 
folder of audio files.

• The ratings are saved in a one or several text file(s) whose name ratings_file (or a cell array of 
file name) is given as second argument of the mirmap function. This text file contains a simple 
column of values, with one value for each file analyzed in the folder of audio files under study, 
using the same ordering of files as for the predictors, i.e., a lexicographic order of file name.

The routine detects all features not sufficiently normal, based on a Lilliefors test (using Statis-
tics Toolbox’s li!ietest) at the 5% significance level. Those non-normal features are then nor-
malized using an optimization algorithm that automatically finds optimal Box-Cox transforma-
tions () of the data, ensuring that their distributions become sufficiently Gaussian, which is a 
prerequisite for correlation estimation. Features hence normalized that are still not considered 
as normal (this times using a more tolerant significance level of 1%) are then excluded from 
further analyses. They are listed in the Command Window under the heading “Excluded:”.

From the selected features, only those whose correlation with the ratings is sufficiently statisti-
cally significant (with a p-value lower than .05) are selected.

The selected features are ordered from the most correlated to the least correlated ones. Fea-
tures that are not sufficiently independent with respect to the better scoring ones (with a nor-
malized crosscorrelation exceeding .6) are deleted as well.

E X A M P L E
f = mirfeatures(‘Folder’)
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mirexport(‘mypredictors.txt’, f)

mirmap(‘mypredictors.txt’, ‘myratings.txt’)

O U T P U T
mirmap returns a structure array, with the following fields:

• normal: the correlation between the normalized features and the ratings:

• cor: the correlation value,

• pval: the related p value;

• significant: the correlation between the statistically significant features and the ratings:

• cor: the correlation value,

• pval: the related p value,

• inter: the cross-correlations with the other features,

• fields: the feature name,

• the resulting alpha and lambda values of the Box-Cox optimization;

• best: the correlation between the independent best features and the ratings:

• index: the indices of chosen features among the significant ones,

• fields: the feature name,

• the related Box-Cox alpha and lambda values.

T E X T  D I S P L A Y
Various information are output in the Command Window:

• the excluded features (cf. below)

• the finally selected features are then displayed, including:

• the index among the significant features (best.index),

• the feature name,

• the correlation value with respect to the rating,

• the worse cross-correlation with respect to better rating features.
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• the result of a step-wise regression (using Statistics Toolbox stepwisefit), showing the succes-
sive steps, and the final results.

• the result of a normalized step-wise regression, this time centering and scaling each feature 
(using stepwisefit option ‘scale’).

• The list of features included in the final regression.

G R A P H I C A L  O U T P U T
The correlation obtained by each of the best independent features are represented by a series 
of horizontal bars with best results at the top and worse results at the bottom. The abscissa 
axis represents the correlation values, that can be either positive or negative. The width of 
each bar indicates the independence of each feature with respect to the higher ones, and is 
computed as one minus the worse normalized cross-correlation. Finally, the color indicates the 
p-value, following the color scale given by the colorbar on the right of the figure: cold colors 
for statistically significant correlations, and warm colors for correlations of limited significance.

The figure below show a real-life example of useful application of the mirmap script. A large set 
of predictors were computed and stored in a highly structured array, composed of a hierarchi-
cal set of cells and structures corresponding to various methods for the predictor estimation. 
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()*+',-.',(/',012',)03&,451&,167',7*',?*1/07<7,:*)76.);1</=@AB61;360(C*1/07<70(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012&,)03',451&,167&,7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167%,7*%,?*1/07<7,:*)76.);1</=@AB61;360(C*1/07<70(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012',)03',451&,167',7*&,<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03&,451&,167',7*',/6890,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167&,7*',<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03&,451',167&,7*',<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167',7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167&,7*%,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167%,7*&,6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/',012',)03',451',167&,7*',6-/109=!,:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/',012',)03',451&,167',7*',<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03&,451',167',7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012&,)03&,451',167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451',167%,7*%,<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/',012&,)03',451&,167',7*',/6890,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451&,167&,7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03',451&,167%,7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012',)03&,451&,167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451',167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03',451&,167',7*',/6890,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167',7*%,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03&,451&,167',7*%,<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167',7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03&,451&,167',7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03&,451&,167&,7*%,<-/61(!,:*)76.);1</=,>6;-

()*+',-.',(/',012&,)03&,451&,167',7*',/6890,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03&,451',167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03',451',167%,7*',6-/109=!,:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012',)03',451',167',7*',/6890,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03&,451&,167',7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451',167%,7*%,6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/',012&,)03',451',167',7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451&,167%,7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/',012',)03',451&,167&,7*',/6890,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03&,451',167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03&,451&,167&,7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451&,167&,7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012&,)03',451&,167&,7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012',)03&,451&,167&,7*%,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012%,)03',451&,167&,7*',/6890,:*)76.);1</=,>6;-

(6;',-.',(/',;//;.?,:*)76.);1</=@AB61;360(A//;.?F)096E,>6;-

()*+',-.',(/&,012&,)03&,451&,167&,7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/',012',)03&,451',167%,7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/',012%,)03',451&,167&,7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012&,)03&,451&,167',7*&,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451',167%,7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

(6;',-.',(/',+/168,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03&,451',167',7*',<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451',167',7*%,/6890,:*)76.);1</=,>6;-

()*+',-.',(/&,012',)03',451&,167',7*%,<-/61(,:*)76.);1</=,>6;-

()*+',-.',(/&,012&,)03',451&,167',7*',6-/109=',:*)76.);1</=@D-/109=0(D-B6)096;*/0.0116);/<0-E,>6;-

()*+',-.',(/&,012',)03&,451',167',7*&,/6890,:*)76.);1</=,>6;-

G0116);/<0-H5</4H1;/<-3H9*)."/+/

H

H
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!"!'#

!"!&

!"!&#

!"!%

!"!%#
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4.3. Predictions

miremotion

The current version of miremotion is calibrated with version 1.3. Its use with more 
recent versions 1.3.1 and 1.3.2 might result in unexpected results.

When miremotion is used for academic research, please cite the following publication:

Tuomas Eerola, Olivier Lartillot, Petri Toiviainen, "Prediction of Multidimensional Emotional 
Ratings in Music From Audio Using Multivariate Regression Models", International Conference 
on Music Information Retrieval, Kobe, 2009.

D E S C R I P T I O N
Emotions evoked in music is usually described along two opposite paradigms (cf. Eerola, Lar-
tillot, Toiviainen, 2009 for a literature review and a study of their interdependencies):

• Either as a decomposition into a few basic emotions. In miremotion, the 5 classes are happy, 
sad, tender, anger, fear.

• Either as a multi-dimensional space where the three dimensions, used in miremotion, are ac-
tivity (or energetic arousal), valence (a pleasure-displeasure continuum) and tension (or tense 
arousal).

miremotion attempts to predict such description of emotion based on the analysis of the audio 
and musical contents of the recordings. Hence the output of miremotion corresponds to this 
underlying localization of emotional content within the 5 basic classes and within the 3 dimen-
sions.

Each class or dimension is supposed to have values spanned in the interval [1,7]. Value 1 would 
correspond to very low value, and value 7 to very high value. This convention is used because 
the models are based on listeners' emotional ratings that were collected exactly the same way, 
as it corresponds to a classical Libert scale used in experimental psychology.

But even if the model was constructed using observation spanning in the interval [1,7], particu-
lar audio examples, not considered in the training, can extend beyond that range. So the inter-
val [0,8] looks like a more probable range of value for these dimensions and concepts.
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Comparison between basic concepts of emotions (happy, sad, tender, anger, fear) and emotion dimensions 
(activity, valence, tension) (Eerola, Larti!ot and Toiviainen, 2009).

P R E D I C T I V E  M O D E L S
Following a systematic statistical methodology, a mapping has been found between each emo-
tion concept or dimension and various sets of audio and musical features. The details of the 
procedure is given in (Eerola, Lartillot and Toiviainen, 2009).

The implemented models are based on multiple linear regression with 5 best predictors (MLR 
option in the paper). In this first version of miremotion, the Box-Cox transformations have been 
removed until the normalization values have been established with a large sample of music. 

• The five factors contributing to the activity score are:

• RMS averaged along frames (β = 0.6664)

• Maximum value of summarized fluctuation (β = 0.6099)

• Spectral centroid averaged along frames (β = 0.4486)
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• Spectral spread averaged along frames (β = -0.4639)

• Entropy of the smoothed and collapsed spectrogram, averaged along frames (β = 0.7056)

• The five factors contributing to the valence score are:

• Standard deviation of RMS along frames (β = -0.3161)

• Maximum value of summarized fluctuation (β = 0.6099)

• Key clarity averaged along frames (β = 0.8802)

• Mode averaged along frames (β = 0.4565)

• Averaged spectral novelty (β = 0.4015)

• The five factors contributing to the tension score are:

• Standard deviation of RMS along frames (β = 0.5382)

• Maximum value of summarized fluctuation (β = -0.5406)

• Key clarity averaged along frames (β = -0.6808)

• Averaged HCDF (β = 0.8629)

• Averaged novelty from unwrapped chromagram (β = -0.5958)

• The five factors contributing to the happy score are:

• Maximum value of summarized fluctuation (β = 0.7438)

• Spectral spread averaged along frames (β = -0.3965)

• Standard deviation of the position of the maximum of the unwrapped chromagram (β = 
0.4047)

• Key clarity averaged along frames (β = 0.7780)

• Mode averaged along frames (β = 0.6620)

• The five factors contributing to the sad score are:

• Spectral spread averaged along frames (β = 0.4324)

• Standard deviation of the position of the maximum of the unwrapped chromagram (β = 
-0.3137)

• Mode averaged along frames (β = -0.5201)
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• Averaged HCDF (β = -0.6017)

• Averaged novelty from wrapped chromagram (β = 0.4493)

• The five factors contributing to the tender score are:

• Spectral centroid averaged along frames (β = -0.2709)

• Standard deviation of roughness (β = -0.4904)

• Key clarity averaged along frames (β = 0.5192)

• Averaged HCDF (β = -0.3995)

• Averaged spectral novelty (β = 0.3391)

• The five factors contributing to the anger score are:

• Roughness averaged along frames (β = 0.5517)

• Key clarity averaged along frames (β = -0.5802)

• Entropy of the smoothed and collapsed spectrogram, averaged along frames (β = 0.2821)

• Averaged novelty from unwrapped chromagram (β = -0.2971)

• The five factors contributing to the fear score are:

• Standard deviation of RMS along frames (β = 0.4069)

• Averaged attack time (β = -0.6388)

• Maximum value of summarized fluctuation (β = -0.2538)

• Key clarity averaged along frames (β = -0.9860)

• Mode averaged along frames (β = -0.3144)

For later version of MIRtoolbox, we plan to revise the coefficients in order to

(a) force the output range between 0 - 1 and 

(b) ground them on alternative models and materials (training sets). 

A classifier of emotion concepts based also on audio features is also under development.
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Audio and musical features founding the prediction of emotion. The colors associated to each feature corres-
ponds to the correlating emotions, fo!owing the same color code that in the previous figure (Eerola, Lar-

ti!ot and Toiviainen, 2009).

O P T I O N A L  A R G U M E N T S
• miremotion(..., ‘Frame’, l, h) predicts the emotional content for each successive frame of 

length l, and with a hop factor of h. By default, l = 1 second and no overlapping.

• miremotion(..., ‘Dimensions’, n) indicates the number of emotion dimensions to output (0, 2 
or 3(. By default, n = 3. Alternatively, these dimensions can be listed:

• miremotion(..., ‘Activity’)

• miremotion(..., ‘Valence’)

• miremotion(..., ‘Tension’)

A value n = 2 will output Activity and Valence only.

• miremotion(..., ‘Arousal’) corresponds to miremotion(..., ‘Activity’, ‘Tension’).
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• miremotion(..., ‘Concepts’) outputs all the emotion concepts (chosen by default). Alternatively, 
these concepts can be listed:

• miremotion(..., ‘Happy’)

• miremotion(..., ‘Sad’)

• miremotion(..., ‘Tender’)

• miremotion(..., ‘Anger’)

• miremotion(..., ‘Fear’)

• miremotion(..., ‘Concepts’, 0) excludes all emotion concepts in the results.

A C C E S S I B L E  O U T P U T
cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Dim’: the list of emotion dimensions taken into consideration,

• ‘DimData’: the score associated with each of these emotion dimensions,

• ‘Class’: the list of emotion classes taken into consideration,

• ‘ClassData’: the score associated with each of these emotion classes,

• ‘ActivityFactors’: the value associated with each of the factors contributing to the activity 
score (in the same order as presented above),

• ‘ValenceFactors’: the value associated with each of the factors contributing to the valence 
score (in the same order as presented above),

• ‘TensionFactors’: the value associated with each of the factors contributing to the tension 
score (in the same order as presented above),

• ‘HappyFactors’: the value associated with each of the factors contributing to the happy 
score (in the same order as presented above),

• ‘SadFactors’: the value associated with each of the factors contributing to the sad score (in 
the same order as presented above),

• ‘TenderFactors’: the value associated with each of the factors contributing to the tender 
score (in the same order as presented above),

• ‘AngerFactors’: the value associated with each of the factors contributing to the anger score 
(in the same order as presented above),
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• ‘FearFactors’: the value associated with each of the factors contributing to the fear score (in 
the same order as presented above).
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mirclassify

D E S C R I P T I O N
mirclassify(test, features_test, train, features_train) classifies the audio sequence(s) contained in the 
audio object test, along the analytic feature(s) features_test, following the supervised learning of 
a training set defined by the audio object train and the corresponding analytic feature(s) fea-
tures_train. Multiple  analytic features have to be grouped into one array of cells. 

Train samples need to be labelled with their respective classes using the ‘Label’ option in mirau-
dio. If test samples are labelled as well, the correctness of the classification is evaluated.

Requires the Netlab toolbox.

You can also integrate your own arrays of numbers computed outside MIRtoolbox as part of the 
features. These arrays should be given as matrices where each successive column is the analysis 
of each successive file.

E X A M P L E
mirclassify(test, mfcc(test), train, mfcc(train))

mirclassify(test, {mfcc(test), centroid(test)},  train, {mfcc(train), centroid(train)})

O P T I O N A L  A R G U M E N T S
• mirclassify(..., 'Nearest’) uses the minimum distance strategy. (by default)

• mirclassify(..., 'Nearest’, k) uses the k-nearest-neighbour strategy. Default value: k = 1, corre-
sponding to the minimum distance strategy.

• mirclassify(..., 'GMM', ng) uses a gaussian mixture model. Each class is modeled by at most ng 
gaussians. Default value: ng = 1.

• Additionnally, the type of mixture model can be specified, using the set of value proposed 
in Netlab’s gmm function: i.e., 'spherical’, 'diag’, 'fu!’ (default value) and 'ppca’. (cf. help 
gmm)

A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Classes’: the class associated to each test sample (same as ‘Data’),

• ‘Correct’: the correctness of the classification, from 0 to 1 (available only if test samples 
have been labelled too).
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mircluster

D E S C R I P T I O N
• mircluster(a, f, ...), where a is one or several audio files already segmented (using mirsegment), and 

f is an analysis of the same data, clusters the segments in the audio sequence(s) contained in 
the audio object a, along the analytic feature(s) f, using the k-means strategy.

• The analytic feature(s) f should not be frame decomposed. Frame-decomposed data 
should first be summarized, using for instance mirmean or mirstd.

• Multiple analytic features have to be grouped into one array of cells.

• mircluster(d, ...), where d is any -ame-decomposed feature computed using MIRtoolbox, clusters 
the segments in the audio sequence(s) contained in the audio object a, along the analytic fea-
ture(s) f, using the k-means strategy. Multiple analytic features have to be grouped into one 
array of cells.

mircluster simply calls the kmeans_clusters function from the SOM toolbox (that is part of MIR-
toolbox distribution) with the data contained in the MIRtoolbox objects provided as input. This 
is the only use of SOM toolbox in MIRtoolbox.

E X A M P L E

• Clustering of audio segments:

sg = mirsegment(a);

mircluster(sg, mirmfcc(sg))

mircluster(sg, {mirmfcc(sg), mircentroid(sg)})

• Clustering of frames:

cc = mirmfcc(a,'Frame');

mircluster(cc)

O P T I O N A L  A R G U M E N T :
• mircluster(..., n) indicates the maximal number of clusters. Default value: n = 2.

• mircluster(..., 'Runs’, r) indicates the maximal number of runs. Default value: r = 5.
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A C C E S S I B L E  O U T P U T

cf. §5.2 for an explanation of the use of the get method. Specific fields:

• ‘Clusters’: a structured descriptions of the clustered reduction (centroids, reduction of the 
initial representation as a sequence of clusters, etc.),
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4.4. Similarity and Retrieval

Operators have been added for the comparison between audio files and for query by examples.

mirdist

D E S C R I P T I O N
mirdist(x,y) evaluates the distance between audio files along a particular representation speci-
fied by the user, corresponding to audio or musical features computed using MIRtoolbox. The 
input variables x and y are the obtained representations computed for the chosen audio files. 

x should corresponding to the representation of one particular file, whereas y can correspond 
to the representation of either one particular file:

x = mirmfcc(‘file1.mp3’);

y = mirmfcc(‘file2.mp3’);

mirdist(x,y)

or a folder of files:

x = mirmfcc(‘file1.mp3’);

y = mirmfcc(‘Folder’);

mirdist(x,y)

• If x and y are not decomposed into frames,

mirdist(..., metric) specifies the distance method metric, following the same list as used in 
Matlab pdist command (cf. help pdist). Default value: metric = ‘Cosine’.

• If x and y are composed of clustered frames (using mircluster), the cluster signatures are com-
pared using Earth Mover Distance (Logan and Salomon, 2001).

• If x and y contains peaks, the vectors representing the peak distributions are compared using 
Euclidean distance (used with mirnovelty in Jacobson, 2006).
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mirquery

D E S C R I P T I O N
mirquery(q,b), where

• q is the analysis of one audio file and 

• b is the analysis of a folder of audio files,

according to the same MIRtoolbox feature, returns the name of the audio files in the database b 
in an increasing distance to q with respect to the chosen feature, where the distance is com-
puted using mirdist.

mirquery(d), where d is the distance between one audio file and a folder of audio file, according 
to a MIRtoolbox feature, returns the name of the audio files in an increasing distance d.

O P T I O N A L  A R G U M E N T S

• mirquery(..., ‘Best’, n) returns the name of the n closest audio files.

• mirquery(.., ‘Distance’, metric) specifies the distance method metric to use (cf. mirdist). De-
fault value: metric = ‘Cosine’.

The successive results can then be played using mirplay.
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4.5. Exportation

mirgetdata

D E S C R I P T I O N
mirgetdata return the data contained in the input in a structure that can be used for further 
computation outside MIRtoolbox.

O U T P U T  F O R M A T

• If the input is based on one non-segmented audio sequence, the result is  returned as a ma-
trix. The columns of the matrix usually  correspond to the successive frames of the audio sig-
nal. The  third dimension of the matrix corresponds to the different channels of a filterbank.

• If the input corresponds to a set of audio sequences, and if each sequence has same number 
of frames, the corresponding resulting matrices are concatenated columnwise one after the 
other. If the number of raws of the elementary matrices varies, the missing values are re-
placed by NaN in the final matrix. On the contrary, if  the number of columns (i.e., frames) 
differs, then the result remains a cell array of matrices.

• Idem if the input corresponds to one or several segmented audio sequence(s).

I N P U T  A N D  O U T P U T
• If the input is a key strength curve, the fourth dimension distinguishes between major and 

minor keys. i.e.:

• d(:,:,:,1) is the keystrength for the major keys, and 

• d(:,:,:,2) is the keystrength for the minor keys.

• If the input is a key estimation, two output are returned:

a. the keys (from 1 to 12) and 

b. the modes (1 for major, 2 for minor).

• If the input is the result of a peak detection, two output are returned: 

a. the position of the peaks and

b. the value corresponding to these peaks, in the units predefined for this data.

 

MIRtoolbox 1.3.2 User’s Manual" 174



What is returned by mirgetdata is no more a MIRtoolbox object, but just a Matlab array (or ma-
trix). So of course, if you display such array using Matlab plot function, what you get is a curve 
without any proper X-axis annotation. (So by default the X-axis simply indicates the sample 
indices).
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mirexport
mirexport(filename, ...) exports statistical information related to diverse data into a text file 
called filename.

mirexport(‘Workspace', ...) instead directly output the statistical information in a structure array 
saved in the Matlab workspace. This structure contains three fields:

• filenames: the name of the original audio files, 

• types: the name of the features,

• data: the data.

The exported data should be related to the same initial audio file or the same ordered set of 
audio files.

The data listed after the first arguments can be:

• any feature computed in MIRtoolbox. What will be exported is the statistical description of 
the  feature (using the mirstat function)

• any structure array of such features. Such as the ouput of the mirstat function.

• any cell array of such features.

• the name of a text file. The text file is imported with the Matlab importdata command. Each 
line of the file should contains a fixed number of data delimited by tabulations. The first line, 
or 'header', indicates the name of each of these columns.

The file format of the output can be either:

• a text file. It follows the same text file representation as for the input text files. The first col-
umn of the matrix indicates the name  of the audio files. The text file can be opened in Mat-
lab, or in a spreadsheet program, such as Microsoft Excel, where the data matrix can be 
automatically reconstructed.

• an attribute-relation file. It follows the ARFF standard, used in particular in the WEKA data 
mining environment.

If the audio files were initially labelled using the ‘Label’ option in miraudio, then these labels are 
automatically indicated as classes in the ARFF output file.
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5.  ADVANCED USE OF MIRTOOLBOX
5.1. Interface preferences

M I R P A R A L L E L  ( B E T A )
mirpara!el(1) toggles on parallel processing: when ‘Folder’ or ‘Folders’ is used, several audio files 
can be analysed in parallel using several parallel Matlab sessions running on the different pro-
cessors and/or processor cores of your computer. (Requires MathWorks’ Para!el Computing Tool-
box.)

mirpara!el(0) toggles back off parallel processing.

M I R V E R B O S E
mirverbose(0) toggles off the display by MIRtoolbox of minor informations in the Matlab Com-
mand Window (such as "Computing mirfunction ...").

mirverbose(1) toggles back on the display of such information.

M I R W A I T B A R
mirwaitbar(0) toggles off the display by MIRtoolbox of waitbar windows.

mirverbose(1) toggles back on the display of these waitbar windows.
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5.2. get

get returns fields of MIRtoolbox objects.

General fields used by most objects are the following:

• ‘Data’: the computed values, stored in a cell array, where each cell, corresponding to one au-
dio file, is itself a cell array, where each cell, corresponding to one segment, is a matrix, where 
columns indicate successive frames, and where multiple channels are represented in the 3rd 
dimension.

cell array

...

cell array

...

matrix matrix

file1

segm1 segm2

cell array

...

matrix matrix

file2

segm1 segm2

• ‘Pos’: the X-axis abscissae related to the Y-axis ordinates given by ‘Data’, and stored in the 
same way as for ‘Data’.

• ‘Unit’: the name of the unit in which the values are represented,

• ‘Sampling: the sampling rate of the data, stored in a array of numbers, one number for each 
audio file.

• ‘NBits’: the resolutions in number of bits of the initial audio file, stored in the same ways as 
for ‘Sampling’.

• ‘Name’: the name of the audio files, stored in a cell array, where each cell indicates the name 
of one file.

• ‘Title’: the name of the data type,

• ‘Channels’: the number and indexing of the channels decomposing the initial signal, stored 
in a cell array, where each cell contains the channel indexes for one audio file.

The list of more specific fields are indicated in the ”Accessible Output” paragraph concluding 
the description of each feature.
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5.3. Memory management

There are important things to know in order to take benefit of the memory management 
mechanism offered by MIRtoolbox.

A U T O M A T E D  M E M O R Y  O P T I M I Z A T I O N
When a MIRtoolbox operator is called with ‘Folder’ (or ‘Folders’) as main argument, the com-
mand is applied to each audio file in the current directory one file after the other. The previous 
audio file is cleared from the memory when the next audio file is considered. The results for all 
audio file are combined into the main memory and returned. For that reason, ‘Folder’ (and ‘Fol-
ders’) keywords should be applied to the feature of highest possible level. For instance, when 
evaluating the key of a batch of file,

o = mirkey(‘Folder’)

each audio file is processed one after the other, and only the key result of each file is stored and 
grouped with those of the other files. This does not cause any memory problem.

On the contrary, the following set of commands should be avoided:

a = miraudio(‘Folder’)

o = mirkey(a)

Why is this code problematic? Because after executing the first line, a! the waveform of a! the 
audio files are supposed to be stored together in the memory, which might sometimes leads to 
memory overflow problems.

Similarly, when a MIRtoolbox operator is called with used for a particularly long audio file, the 
audio file is automatically decomposed into little chunks that can fit into the memory. The 
command is applied to each successive chunk one after the other. The previous chunk is clea-
red from the memory when the next chunk is considered. The results for all chunks are com-
bined into the main memory and returned. For that reason, audio files should be applied to the 
feature of highest possible level. For instance, when evaluating the key evolution of long file,

o = mirkey(‘myhugefile’, ‘Frame’)

each successive chunk is processed one after the other, and only the key result of each chunk is 
stored and concatenated with those of the other chunks. This does not cause any memory pro-
blem.
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On the contrary, the following set of commands should be avoided:

a = miraudio(‘myhugefile’)

o = mirkey(a, ‘Frame’)

Why is this code problematic? Because after executing the first line, the complete waveform of 
the audio files is supposed to be stored entirely in the memory, which might sometimes leads 
to memory overflow problems.

For those reasons, as mentioned previously, when possible avoid writing a succession of opera-
tors if you can write in one line more efficiently.

Hopefully, there is a way to avoid such consideration by using the ‘Design’ keyword, as will be 
explained below.

F L O W C H A R T  D E S I G N
If you write this command:

a = miraudio(‘myhugefile’)

s = mirspectrum(a, ‘Frame’) 

c = mircentroid(s)

there may be memory problem when computing the spectrogram. In order to benefit from 
MIRtoolbox memory management mechanisms, you should write instead:

a = miraudio(‘Design’)

s = mirspectrum(a, ‘Frame’) 

c = mircentroid(s) 

mireval(c, ‘myhugefile’)

C O M P L E X  F L O W C H A R T  D E S I G N
But if you want to get several output in your flowchart, for instance:
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s = mirspectrum(‘mysong’);

cent = mircentroid(s); 

ceps = mircepstrum(s);

You should use a mirstruct object, which store all the outputs of your flowchart into fields and 
write as follows:

myflow = mirstruct

All the temporary data used in your flowchart should be stored into a tmp field. Hence when a 
spectrogram is used for several final features, it should be a temporary variable:

myflow = mirstruct

myflow.tmp.s = mirspectrum(‘Design’, ‘Frame’);

myflow.cent = mircentroid(myflow.tmp.s);

myflow.ceps = mircepstrum(myflow.tmp.s);

output = mireval(myflow, ‘myhugefile’);

Similarly, when an onset detection curve is used for several final features, it should be a tempo-
rary variable:

myflow = mirstruct;

myflow.tmp.o = mironsets(‘Design’);

myflow.at = mirattacktime(myflow.tmp.o);

myflow.as = mirattackslope(myflow.tmp.o);

myflow = mirstat(myflow);
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output = mireval(myflow, ‘myhugefile’);

Please note also that in the current version of MIRtoolbox, it is not possible to identify directly 
an output variable with a temporary variable, such as:

r.rms = r.dynamics.tmp.rms;      % Does not work yet.

As a temporary solution, you can call the MIRtoolbox operator once again, such as:

r.rms = mirrms(r.dynamics.tmp.rms);      % This is OK.

Note also that, as can be seen in the previous example, you can keep only the statistics of the 
results instead of the complete results by adding the line:

myflow = mirstat(myflow);

S T R U C T U R E D  C O M P L E X  F L O W C H A R T  D E S I G N
You can decompose your flowchart into several fields, using the standard structure array used 
in Matlab, for instance associating each field with one particular musical dimension (such as 
‘dynamics’, etc.). You can assign a temporary variable within one particular field, by declaring 
that field as a mirstruct object:

r.dynamics = mirstruct;

r.dynamics.tmp.rms = mirrms(a, ‘Frame’);

r.dynamics.mean = mirmean(r.dynamics.tmp.rms); 

r.dynamics.lowenergy = mirlowenergy(r.dynamics.tmp.rms, ‘ASR’);

r.timbral = mirstruct;

...

mireval(r, ‘Folders’);
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In this case, the temporary variable (here, r.dynamics.tmp.rms) should be used only inside that 
particular field in which it has been defined (here, r.dynamics).

 

MIRtoolbox 1.3.2 User’s Manual" 183



REFERENCES
Alonso, David, Richard. A study of tempo tracking algorithms from polyphonic music signals, 4 COST 276 Workshop, 2003.

Juan P. Bello, Chris Duxbury, Mike Davies, and Mark Sandler, On the Use of Phase and Energy for Musical Onset Detection in 
the Complex Domain, IEEE Signal Processing Letters, 11-6, 2004.

Paul Boersma (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled 
sound. IFA Proceedings 17: 97-110.

Paul Boersma & David Weenink (2005). Praat: doing phonetics by computer [Computer program] http://www.praat.org/

B. P. Bogert, M. J. R. Healy, and J. W. Tukey: The quefrency alanysis of time series for echoes: cepstrum, pseudo-
autocovariance, cross-cepstrum, and saphe cracking. Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) 
Chapter 15, 209-243. New York: Wiley, 1963.

T. Eerola, O. Lartillot, P. Toiviainen, "Prediction of Multidimensional Emotional Ratings in Music From Audio Using Multi-
variate Regression Models", International Conference on Music Information Retrieval, Kobe, 2009.

H. Fastl. Fluctuation strength and temporal masking patterns of amplitude-modulated broad-band noise. Hearing Research, 
8:59–69, 1982. 

Y. Feng, Y. Zhuang, Y. Pan. (2003) Popular music retrieval by detecting mood, ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

J. Foote, M. Cooper, U. Nam. (2002) "Audio Retrieval by Rhythmic Similarity", ISMIR 2002.

Foote, Cooper. (2003). Media Segmentation using Self-Similarity Decomposition. SPIE Storage and Retrieval for Multimedia Da-
tabases, 5021, 167-75.

Gómez, E. (2006). Tonal description of music audio signal. Phd thesis, Universitat Pompeu Fabra, Barcelona .

Harte, C. A. and M. B. Sandler, Detecting harmonic change in musical audio, in Proceedings of Audio and Music Computing for 
Multimedia Workshop, Santa Barbara, CA, 2006. 

A. Klapuri, “Sound onset detection by applying psychoacoustic knowledge”, IEEE International Conference on Acoustics, Speech, 
and Signal Processing, 1999. 

Klapuri, A., A. Eronen and J. Astola. (2006). “Analysis of the meter of acoustic musical signals”, IEEE Transactions on Audio, 
Speech and Langage Processing, 14-1, 342– 355.

R. Koch, A Tutorial in Probability and Statistics, http://web.cecs.pdx.edu/~roy/tutorial/Stat_int.htm

Krimphoff, J., McAdams, S. & Winsberg, S. (1994), Caractérisation du timbre des sons complexes. II : Analyses acoustiques et 
quantification psychophysique. Journal de Physique, 4(C5), 625-628.

Krumhansl, Cognitive foundations of musical pitch. Oxford UP, 1990.

K. Jacobson, A multifaceted approach to music similarity, ISMIR 2006.

Jensen, Timbre Models of Musical Sounds, Rapport 99/7, University of Copenhagen, 1999.

Juslin, P. N. (2000). Cue utilization in communication of emotion in music performance: relating performance to perception. 
Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1797-813.

Olivier Lartillot, Tuomas Eerola, Petri Toiviainen, Jose Fornari, "Multi-feature modeling of pulse clarity: Design, validation, 
and optimization", International Conference on Music Information Retrieval, Philadelphia, 2008.

Laukka, P., Juslin, P. N., and Bresin, R. (2005). A dimensional approach to vocal expression of emotion. Cognition and Emotion, 
19, 633-653.

Logan, B., A. Salomon. (2001). A content-based music similarity function. Cambridge Research Laboratory, Technical Report 
Series.

 

MIRtoolbox 1.3.2 User’s Manual" 184

http://www.fon.hum.uva.nl/paul/papers/Proceedings_1993.pdf
http://www.fon.hum.uva.nl/paul/papers/Proceedings_1993.pdf
http://www.fon.hum.uva.nl/paul/papers/Proceedings_1993.pdf
http://www.fon.hum.uva.nl/paul/papers/Proceedings_1993.pdf
http://www.fon.hum.uva.nl/Proceedings/IFA-Proceedings.html
http://www.fon.hum.uva.nl/Proceedings/IFA-Proceedings.html
http://www.praat.org
http://www.praat.org
http://ismir2009.ismir.net/program.html
http://ismir2009.ismir.net/program.html
http://web.cecs.pdx.edu/~roy/tutorial/Stat_int.htm
http://web.cecs.pdx.edu/~roy/tutorial/Stat_int.htm
http://ismir2008.ismir.net/program
http://ismir2008.ismir.net/program


McAulay, R.; Quatieri, T. (1996). “Speech analysis/Synthesis based on a sinusoidal representation”, Acoustics, Speech and Signal 
Processing, IEEE Transactions on, Volume 34, Issue 4. Page(s): 744 - 754

Nabney, I. ”NETLAB: Algorithms for pattern recognition”, Springer Advances In Pattern Recognition Series, 2002. 

Pampalk, E. “A Matlab Toolbox to Compute Similarity from Audio”, International Conference on Music Information Retrieval, 2004

E. Pampalk, A. Rauber, D. Merkl, "Content-based Organization and Visualization of Music Archives", ACM Multimedia 2002, 
pp. 570-579.

R. D. Patterson et al. “Complex sounds and auditory images,” in Auditory Physiology and Perception, Y. Cazals et al, Oxford, 
1992, pp. 429-446.

Peeters. G. (2004). A large set of audio features for sound description (similarity and classification) in the CUIDADO project. version 1.0

Peeters. Music pitch representation by periodicity measures based on combined temporal and spectral representations. IC-
ASSP 2006.

Plomp & Levelt "Tonal Consonance and Critical Bandwidth" Journal of the Acoustical Society of America, 1965.

Pohle, T., E. Pampalk and G. Widmer (2005). Evaluation of Frequently Used Audio Features for Classification of Music Into 
Perceptual Categories. Proceedings of the Fourth International Workshop on Content-Based Multimedia Indexing (CBMI'05), Riga, Lat-
via, June 21-23.

Scheirer, E. D. (1998). “Tempo and beat analysis of acoustic musical signals”, Journal of the Acoustical Society of America, 103-1, 
588–601.

Sethares, W. A. (1998). Tuning, Timbre, Spectrum, Scale, Springer-Verlag.

Shannon, C. E. 1948. “A Mathematical Theory of Communication.” Be) Systems Technical Journal 27:379–423.

Slaney, M. Auditory Toolbox Version 2, Technical Report. Interval Research Corporation, 1998-010, 1998.

S.S. Stevens and J. Volkman (1940) "The relation of pitch to frequency: A revised scale" Am. J. Psychol. 53: 329-353. 

Terhardt, E. Calculating virtual pitch. Hearing Research, 1:155–182, 1979.

Toiviainen & Krumhansl, “Measuring and modeling real-time responses to music: The dynamics of tonality induction”, Percep-
tion 32-6, pp. 741–766, 2003.

Toiviainen, Snyder. “Tapping to Bach: Resonance-based modeling of pulse”, Music Perception, 21-1, 43–80, 2003. 

Tolonen, Karjalainen. A Computationally Efficient Multipitch Analysis Model, IEEE Transactions on Speech and Audio Processing, 
8(6), 2000.

Tzanetakis, Cook. Musical genre classification of audio signals. IEEE Tr. Speech and Audio Processing, 10(5),293-302, 2002.

Van Noorden, L., & Moelants, D. (1999). Resonance in the Perception of Musical Pulse. Journal of New Music Research, 28(1), 43-
66. 

Vassilakis, P. N. (2001). Perceptual and Physical Properties of Amplitude Fluctuation and their Musical Significance. Doctoral 
Dissertation. Los Angeles: University of California, Los Angeles; Systematic Musicology.

Vesanto, J. ”Self-Organizing Map in Matlab: the SOM Toolbox”, Matlab DSP Conference, 35–40, 1999. 

E. Zwicker, G. Flottorp and S.S. Stevens (1957) "Critical bandwidth in loudness summation" J. Acoust. Soc. Am. 29: 548-557. 

 

MIRtoolbox 1.3.2 User’s Manual" 185

http://cbmi05.cs.tut.fi/
http://cbmi05.cs.tut.fi/

