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This report describes a collection of tools that implement several popular auditory models for a numerical program-
ming environment called M

 

ATLAB

 

. This toolbox will be useful to researchers that are interested in how the auditory 
periphery works and want to compare and test their theories. This toolbox will also be useful to speech and auditory 
engineers who want to see how the human auditory system represents sounds.

This version of the toolbox fixes several bugs, especially in the Gammatone and MFCC implementations, and adds 
several new functions. This report was previously published as Apple Computer Technical Report #45. We appreciate 
receiving permission from Apple Computer to republish their code and to update this package.

There are many ways to describe and represent sounds. The figure below shows one taxonomy based on signal 
dimensionality. A simple waveform is a one-dimensional representation of sound. The two-dimensional representa-
tion describes the acoustic signal as a time-frequency image. This is the typical approach for sound and speech analy-
sis. This toolbox includes conventional tools such as the short-time-Fourier-Transform (STFT or Spectrogram) and 
several cochlear models that estimate auditory nerve firing “probabilities” as a function of time. Finally, the next level 
of abstraction is to summarize the periodicities of the cochlear output with the correlogram. The correlogram provides 
a powerful representation that makes it easier to understand multiple sounds and to perform auditory scene analysis.

Six types of auditory time-frequency representations are implemented in this toolbox:
1) Richard F. Lyon has described an auditory model based on a transmission line model of the basilar 

membrane and followed by several stages of adaptation. This model can represent sound at either a 
fine time scale (probabilities of an auditory nerve firing) or at the longer time scales characteristic 
of the spectrogram or MFCC analysis. The 

 

LyonPassiveEar

 

 command implements this particular 
ear model.

2) Roy Patterson has proposed a model of psychoacoustic filtering based on critical bands. This audi-
tory front-end combines a Gammatone filter bank with a model of hair cell dynamics proposed by 
Ray Meddis. This auditory model is implemented using the 

 

MakeERBFilters

 

, 

 

ERBFilterBank

 

, and 

 

MeddisHairCell

 

 commands.
3) Stephanie Seneff has described a cochlear model that combines a critical band filterbank with mod-

els of detection and automatic gain control. This toolbox implements stages I and II of her model.
4) Conventional FFT analysis is represented using the spectrogram. Both narrow band and wide band 

spectrograms are possible. See the 

 

spectrogram

 

 command for more information.
5) A common front-end for many speech recognition systems consists of Mel-frequency cepstral coef-

ficients (MFCC). This technique combines an auditory filter-bank with a cosine transform to give a 
rate representation roughly similar to the auditory system. See the 

 

mfcc

 

 command for more infor-
mation. In addition, a common technique known as 

 

rasta

 

 is included to filter the coefficients, simu-
lating the effects of masking and providing speech recognition system a measure of environmental 
adaptation.

6) Conventional speech-recognition systems often use linear-predictive analysis to model a speech 
signal. The forward transform, 

 

proclpc

 

, and its inverse, 

 

synlpc

 

 are included.

My work has concentrated on how to capture and represent the information in our auditory environment. Towards this 
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goal, we have been investigating the correlogram. The primary goal of the correlogram is to summarize the temporal 
activity at the output of the cochlea. With most sounds, and especially with voiced speech, much of the information in 
the waveform and cochlear output is repetitive. The correlogram is an easy way to capture the periodicities and make 
them visible. This toolbox includes several routines to compute and display correlograms, and to compute pitch esti-
mate from correlograms.

This toolbox has a very simple view of data. Sound waveforms are stored as one-dimensional arrays. The output from 
cochlear models is stored as a two-dimensional array, each row representing one neuron’s firing probability, and col-
umns of the matrix representing firing probabilities on the auditory nerves at one time. Correlograms can be stored as 
either movies or as an array. Filter coefficients are either stored as lists, like the M

 

ATLAB

 

 filter function, or second-
order-sections are stored as a list of five coefficients.

Many of the auditory routines in this toolbox are demonstrated using the same speech signal. This test sound is sup-
plied as the file “tapestry.wav” and can be imported into M

 

ATLAB 

 

using the wavread function. This signal is a female 
speaking saying “A huge tapestry hung in her hallway” and is from the TIMIT speech database (TRAIN/DR5/
FCDR1/SX106/SX106.ADC).

This report is not a detailed description of each auditory model. Most function descriptions include references to 
more detailed descriptions of each model.

This software has been tested on Macintosh and Windows95 computers running M

 

ATLAB

 

 5.2 and on SGI and Sun 
workstations. All of this code is portable so we don’t expect any problems when running on any other machine that 
runs M

 

ATLAB

 

.

There are several other packages of auditory models. They have slightly different philosophies and coding styles. 
Roy Patterson and his colleagues in Cambridge UK have a package called the Auditory Image Model (AIM). Written 
in C, this package allows many different models of auditory perception to be linked together. More information about 
the AIM model is available at 

http://www.mrc-cbu.cam.ac.uk/personal/roy.patterson/aim/
A similar package has been written by Ray Meddis and Lowel O’Mard. More information about LUTEAR is avail-
able at 

http://www.essex.ac.uk/psychology/hearinglab/lutear/home.html

Finally, a word from our lawyers:
Warranty Information: Even though Interval has reviewed this software, Interval makes no 
warranty or representation, either express or implied, with respect to this software, its quality, 
accuracy, merchantability, or fitness for a particular purpose. As a result, this software is pro-
vided “as is,” and you, its user, are assuming the entire risk as to its quality and accuracy.

A flowchart showing how all the commands in this toolbox fit together is shown in the next section.

 

Installation

 

This toolbox is supplied as a collection of M

 

ATLAB

 

 m-functions and three MEX functions written in C. The three 
MEX functions, 

 

agc

 

, 

 

soscascade

 

, and 

 

sosfilters

 

, are precompiled for the Macintosh. You will need to compile them 
yourself for other machines using the Mathworks mex function. Use the example code, included with this documen-
tation, to test each function.

A m-function called 

 

test_auditory

 

 is provided to quickly run through all the examples provided in this documentation. 
Use this function to test whether all functions are performing according to the documentation.
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Flow Charts

 

This section shows which routines are used by each function in this toolbox. This 
will help readers understand the structure of the cochlear models. Page numbers are 
shown in parenthesis.

 

Lyons Passive Long Wave Cochlear Model

Patterson-Holdsworth ERB Filter Bank

Seneff Auditory Model

Alternate Analysis Techniques

Correlogram Processing

Demonstrations

agc (6)

sosfilters (47)

DesignLyonCascade (15)

EpsilonFromTauFS (17)

soscascade (46)

SetGain (44)

SecondOrderFilter (37)

LyonPassiveEar (21)

MakeERBFilters (24) MeddisHairCell (27)ERBFilterBank (18)

SeneffEar (39) SeneffEarSetup (42)

mfcc (29) spectrogram (49)

proclpc (33) synlpc (50) rasta (35)
 

CorrelogramFrame (10)

CorrelogramArray (8)CorrelogramMovie (11) CorrelogramPitch (12)

MakeVowel (26) FMPoints (19)

WhiteVowel (52)
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agc

 

Purpose

 

Adaptation process for Lyon’s passive longwave cochlear model

 

Synopsis

 

[output, state] = agc(input, coeffs, state)

 

Description

 

This function implements multiple stages of the multiplicative adaptive gain used by 
Lyon’s passive longwave cochlear model. The input is a number of channels from a 
filter bank. An optional array of state filters, one per channel and per stage, measure a 
running average of the energy in the channel. These state variables are then used to 
drive a single multiplicative gain per stage per channel.

The coeffs array is used to parameterize the AGC system. Two parameters must be 
supplied for each stage, a target output value and an epsilon. The AGC tries to keep 
the output below the target value. The gain is changed gradually based on the value 
of epsilon. Smaller values of epsilon allow the AGC process to take longer to adjust 
the output. Values of epsilon should be between 0 and 1. See the routine 

 

EpsilonFromTauFS (17)

 

 for more information.

The state argument is optional. If the input has N samples then the parameters have 
the following sizes:

input is C x N
Coeffs is 2 x S (targets;epsilons)
output is C x N
state is C x S

Note, the implementation of the 

 

agc

 

 function in this toolbox includes an additional 
limiting term to prevent the system gain from getting to close to zero. This is done as 
described on page 19 of “Lyon’s Cochlear Model,” by not letting the state variable 
exceed 0.9.

 

Examples

 

»agc(ones(1,20),[.5;.5])

ans =

  Columns 1 through 7 

    1.0000 0.1000 0.4500 0.2750 0.3625 0.3187 0.3406

  Columns 8 through 14 

    0.3297 0.3352 0.3324 0.3338 0.3331 0.3334 0.3333

  Columns 15 through 20 

    0.3334 0.3333 0.3333 0.3333 0.3333 0.3333

 

Here are some more examples. First use a target of 0.8 and a relatively short time 
constant (large value of epsilon or 0.5). Note the final output value will be dependent 
on both the input value and the AGC target. The oscillatory behaviour is normal 
when the input signal gets larger than the target faster than the AGC can cut the gain.



 

agc
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»plot(agc(ones(1,30),[.8;.5]))

 

Now switch to a much smaller target value.

 

»plot(agc(ones(1,30),[.4;.5]))

 

Finally, we switch to a much longer time constant (smaller value of epsilon.) This 
makes the response much less likely to oscillate, but now the AGC takes longer to cut 
the signal level to the target.

 

»plot(agc(ones(1,30),[.4;.1]))

 

See Also

 

Malcolm Slaney, 

 

Lyon’s Cochlear Model,

 

 

 

Apple Computer Technical Report #13, 
1988. Currently available at

http://web.interval.com/~malcolm/pubs.html#LyonCochlear
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CorrelogramArray

 

Purpose

 

Compute a sequence of correlogram frames and store in one large array

 

Synopsis

 

movie = CorrelogramArray(input, sr, frameRate, width)

 

Description

 

This routine computes multiple frames of a correlogram, storing each frame as one 
row in a large array. The 

 

input

 

 data can be from any of the cochlear models in this 
toolbox.

The 

 

input

 

 array should be of size NxL where N is the number of cochlear channels, 
and each channel has L time steps, each sample representing an auditory fiber firing 
probability. The 

 

input

 

 is sampled at a frequency of 

 

sr

 

.

The resulting correlogram array has one frame stored in each row. These frames are 
computed 

 

frameRate

 

 times per second. Each image in the correlogram is N x

 

 width

 

 
in size. The rows in the output array each have N x 

 

width

 

 elements.

 

Examples

 

The correlogram of a vowel with vibrato can be calculated, played, and displayed 
using the following code.

 

»u=MakeVowel(4000,FMPoints(4000,120),16000,'u');
»soundsc(u,16000)
»coch=LyonPassiveEar(u,16000,1,4,.25);
»width = 256;
»cor=CorrelogramArray(coch,16000,16,width);
Correlogram spacing is 1000 samples per frame.
CorrelogramFrame fftSize is 8192
CorrelogramFrame fftSize is 8192
CorrelogramFrame fftSize is 8192
CorrelogramFrame fftSize is 8192
»[pixels frames] = size(cor);
»colormap(1-gray);
»for j=1:frames

imagesc(reshape(cor(:,j),pixels/width,width));
drawnow;

end



 

CorrelogramArray
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This produces the following images. Note how the pitch line moves.

 

See Also

 

CorrelogramFrame, CorrelogramMovie

Malcolm Slaney and R. F. Lyon, “On the importance of time—A temporal represen-
tation of sound,” in 

 

Visual Representations of Speech Signals

 

, M. Cooke, S. Beete, 
and M. Crawford, eds., J. Wiley and Sons, Sussex, England, 1993. Also available at

http://web.interval.com/~malcolm/pubs.html#ImportanceOfTime
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CorrelogramFrame

 

Purpose

 

Compute one frame of a correlogram

 

Synopsis

 

picture = CorrelogramFrame(data, picWidth, start, winLen)

 

Description

 

This routine computes one frame of a correlogram. The 

 

input

 

 data is a two-dimen-
sional array of cochlear data, each row representing firing probabilities from one 
cochlear channel. The output picture is a two dimensional array with one row for 
each row of cochlear input data and 

 

picWidth

 

 pixels wide.

The correlogram is computed with autocorrelation using data from the input array. 
For each channel, the data from is extracted starting at column 

 

start

 

 and extending 
for 

 

winLength

 

 time steps. 

 

Examples

 

A simple correlogram can be calculated from synthetic data using the following 
code. We use 20 harmonic sinusoids as input (with high frequencies at the top to sim-
ulate the cochlea).

 

»for j=20:-1:1
c(j,:) = max(0,sin((1:256)/256*(21-j)*3*2*pi));

end
»picture=CorrelogramFrame(c,128,1,256);
»image(picture/4*length(colormap))
»colormap(1-gray)

 

Which produces the following image:

 

See Also

 

This routine is used by the 

 

CorrelogramArray

 

 and 

 

CorrelogramMovie

 

 routines.

Malcolm Slaney and R. F. Lyon, “On the importance of time—A temporal represen-
tation of sound,” in 

 

Visual Representations of Speech Signals

 

, M. Cooke, S. Beete, 
and M. Crawford, eds., J. Wiley and Sons, Sussex, England, 1993. Also available at

 http://web.interval.com/~malcolm/pubs.html#ImportanceOfTime
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CorrelogramMovie

 

Purpose

 

Compute a correlogram movie

 

Synopsis

 

movie = CorrelogramMovie(data, sr, frameRate, width)

 

Description

 

This routine computes multiple frames of a correlogram, storing each image as one 
frame in a M

 

ATLAB

 

 movie object. The 

 

input

 

 data can be from any of the cochlear 
models in this toolbox.

The 

 

input

 

 array should be of size NxL where N is the number of cochlear channels, 
and each channel has L firing probabilities. The 

 

input

 

 is sampled at a frequency of 

 

sr

 

.

The resulting correlogram array has one frame stored in each row. These frames are 
computed 

 

frameRate

 

 times per second. Each image in the correlogram is N x

 

 width

 

 
in size. The rows in the output array each have N x 

 

width

 

 elements. Use the M

 

ATLAB

 

 
movie command to play the resulting movie on the screen.

 

Examples

 

A correlogram movie can be calculated using the following code. See the 

 

CorrelogramArray (8)

 

 documentation for images of the movie frames.

 

»u=MakeVowel(4000,FMPoints(4000,120),16000,'u');
»soundsc(u,16000)
»coch=LyonPassiveEar(u,16000,1,4,.25);
»mov=CorrelogramMovie(coch,16000,16,256);
»movie(mov,-10,16)

 

See Also

 

CorrelogramFrame

 

, 

 

CorrelogramArray

 

Malcolm Slaney and R. F. Lyon, “On the importance of time—A temporal represen-
tation of sound,” in 

 

Visual Representations of Speech Signals

 

, M. Cooke, S. Beete, 
and M. Crawford, eds., J. Wiley and Sons, Sussex, England, 1993. Also available at

http://web.interval.com/~malcolm/pubs.html#ImportanceOfTime
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CorrelogramPitch

Purpose
Compute the pitch of a sound using the correlogram

Synopsis
[pitch salience]=CorrelogramPitch(correlogram, ... 

width, sr [, lowPitch, highPitch]);

Description
This routine calculates the pitch of a sound using a correlogram model of human 
pitch perception. Given a correlogram, as computed by CorrelogramArray, this rou-
tine performs the following operations on each frame of the correlogram.
1) Reshape the data in one row of the correlogram array into a correlo-

gram image. The second function argument, width, is needed to 
reshape the correlogram to the proper size.

2) Summarize the correlogram frame by adding the energy at each time 
lag across all channels.

3) Remove the peak in the summary correlogram at zero lag by remov-
ing all points in the summary correlogram up to the first positive 
inflection.

4) Remove all points from the summary correlogram outside the valid 
pitch range.

5) Find the position of the largest peak that remains. This is an estimate 
of the pitch. The sample rate (sr) argument is used to convert from 
autocorrelation lag index to pitch frequency.

6) Pitch salience is calculated by dividing the value of the summary 
correlogram at the pitch peak into the value of the summary correlo-
gram at zero lag. Highly periodic sounds with an easily perceivable 
pitch will have a salience close to 1, aperiodic sounds will have a 
salience closer to zero.

The result is a single pitch estimate and a crude estimate of pitch salience at every 
frame.

Note, this routine uses a very simple, but powerful, algorithm to model human pitch 
perception. The paper by Slaney and Lyon describes additional algorithmic enhance-
ments that allow more robust pitch estimates.

The CorrelogramPitch function uses optional lowPitch and highPitch arguments to 
limit the range of legal pitch values.It is important to note that neither Correlo-
gramPitch or the papers referenced below include any other higher-level knowledge 
about pitch. Notably, this work does not enforce any frame-to-frame continuity in the 
pitch. Each pitch estimate is independent and there is no restriction preventing the 
estimate to change instantaneously from frame to frame.

Examples
The simplest possible pitch detector is computed using auto-correlation of the origi-
nal waveform. This can be done by computing the correlogram of the original wave-
form (pretending that it is the output of a cochlear model with just one channel). The 
input is a vowel with it’s pitch centered at 120Hz and a 5Hz vibrato.

»u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
»cor=CorrelogramArray(u,22254,50,256);
»p=CorrelogramPitch(cor,256,22254);
»plot(p)
»axis([0 45 110 130])
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The resulting pitch is shown below. The final pitch value is an artifact of the compu-
tation at the end of the signal. 

A more robust result is possible if the correlogram is computed on the output of a 
cochlear model. The example below computes the cochlear output and then the cor-
relogram of the /u/ vowel.

»coch=LyonPassiveEar(u,22254,1,4,.5);
»cor=CorrelogramArray(coch,22254,50,256);
»p=CorrelogramPitch(cor,256,22254);
»plot(p)
»axis([0 45110 130])

The resulting pitch estimate is

The lowPitch and highPitch arguments can be used to limit the pitch estimates to a 
known range. This is a simple way to make the pitch estimate use high-order bodies 
of knowledge. The example below shows adding steadily increasing gaussian-white 
noise to the /u/ vowel and then estimating the pitch.

»u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
»n=randn([1 20000]).*(1:20000)/20000;
»un=u+n/4;
»coch=LyonPassiveEar(un,22254,1,4,.5);
»cor=CorrelogramArray(coch,22254,50,256);
»[pitch sal]=CorrelogramPitch(cor,256,22254,100,200);
»plot(pitch)

The pitch is limited to values between 100 and 200Hz and the resulting estimate is 
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The salience of this pitch estimate declines as the signal to noise ratio goes down.

See Also
The basic idea behind this model of pitch is described in three papers. The first paper 
extends the functionality implemented by this function using several techniques to 
more reliably pick the most robust peak.

Malcolm Slaney and Richard F. Lyon, “A perceptual pitch detec-
tor,” in the Proceedings of the 1990 International Conference on 
Acoustics, Speech, and Signal Processing, Albuquerque, NM, 
IEEE, pp 357-360, 1990. Also available at
 http://web.interval.com/~malcolm/pubs.html#perceptualpitch

An extensive comparison of the performance of a correlogram model of pitch and 
human performance is described in:

Ray Meddis and Michael J. Hewitt, “Virtual pitch and phase sensi-
tivity of a computer model of the auditory periphery, I. Pitch identi-
fication,” J. Acoustical Society of America, 89 (6), pp. 2866-2682, 
1991.

Ray Meddis and Michael J. Hewitt, “Virtual pitch and phase sensi-
tivity of a computer model of the auditory periphery, II. Phase sen-
sitivity,” J. Acoustical Society of America, 89 (6), pp. 2683-2894, 
1991.
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DesignLyonFilters

Purpose
Design the filters needed to implement Lyon’s passive cochlear model

Synopsis
[filters, freqs] = DesignLyonFilters(fs,EarQ,StepFactor)

Description
Design the cascade of second order filters and the front filters (outer/middle and 
compensator) needed for Lyon's Passive Short Wave (Second Order Sections) 
cochlear model. The variables used here come from Apple ATG Technical Report 
#13 titled Lyon's Cochlear Model.

Most of the parameters are hardwired into this m-function. The user settable parame-
ters are the digital sampling rate (fs), the basic Q of the each stage (EarQ, usually 8 
or 4), and the StepFactor between channels (usually .25 and .125, respectively.) The 
EarQ and Stepfactor parameters default to 8 and 32/EarQ respectively.

The result is returned as rows of second order filters; three coefficients for the numer-
ator and two for the denominator. Using the same convention as the MATLAB  filter 
function, the coefficients are [B0 B1 B2 A1 A2].

This function is called automatically by LyonPassiveEar to design the appropriate fil-
terbank.

Examples
The first five channels of a typical filter bank design are shown below. Note, the first 
two channels implement the model’s outer and middle ear filters.

»filts=DesignLyonFilters(16000);
»size(filts)

ans =

    88     5

»filts(1:5,:)

ans =

         0    0.7474   -0.6644         0         0
    0.8373         0   -0.8373    1.6433    0.6772
    0.8899    1.7137    0.8251    1.6369    0.6854
    0.8877    1.7027    0.8250    1.6160    0.6934
    0.8859    1.6774    0.8252    1.5821    0.7011

The frequency response of this filter bank can be calculated using soscascade.
»resp=soscascade([1 zeros(1,255)],filts);
»freqResp=20*log10(abs(fft(resp(1:5:88,:)')));
»freqScale=(0:255)/256*16000;
»semilogx(freqScale(1:128),freqResp(1:128,:))
»axis([100 10000 -60 20])
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The resulting response for every fifth channel is shown below.

See Also
Malcolm Slaney, Lyon’s Cochlear Model, Apple Computer Technical Report #13, 
1988. Also available at

http://web.interval.com/~malcolm/pubs.html#LyonsCochlear
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EpsilonFromTauFS

Purpose
Calculate first order decay coefficient (tau)

Synopsis
epsilon = EpsilonFromTauFS(tau, fs)

Description
Find first order filter coefficient as a function of time constant and sample rate

Examples
The following example shows the design of a first order filter with a sampling inter-
val of 1 and a time constant of 5 (samples). A simple digital filter is formed by add-
ing at each time the current input value and (1-epsilon) times the last output value. 
The resulting impulse response decays exponentially, reaching 37% of it’s original 
value in one time constant, tau.

You can verify the relationship between the time constant and the impulse response 
using the following example code.

»eps=EpsilonFromTauFS(5,1)

eps =

    0.1813

»filter(1, [1 eps-1],[1 zeros(1,9)])

ans =

  Columns 1 through 7 

    1.0000 0.8187 0.6703 0.5488 0.4493 0.3679 0.3012

  Columns 8 through 10 

    0.2466 0.2019 0.1653

»sosfilters([1 zeros(1,9)],[1 0 0 eps-1 0])

ans =

  Columns 1 through 7 

   1.0000 0.8187  0.6703  0.5488  0.4493  0.3679 0.3012

  Columns 8 through 10 

   0.2466 0.2019  0.1653
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ERBFilterBank

Purpose
Filter an audio signal with a bank of Gammatone filters

Synopsis
output = ERBFilterBank(x, fcoefs)

Description
Process an audio waveform with a gammatone filter bank. Use the MakeERBFilters 
function to design the fcoefs parameter, which completely specifies the Gammatone 
filterbank.
 
This function takes a single sound vector, and returns an array of filter outputs, one 
output per column.  The filter coefficients are computed for you if you do not specify 
them.  The default Gammatone filter bank has a 22050Hz sampling rate, and pro-
vides 64 filters down to 100Hz.

Examples
See the examples shown in the MakeERBFilters on page 24.
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FMPoints

Purpose
Compute glottal pulses for voice with vibrato

Synopsis
points=FMPoints(len, freq, fmFreq, fmAmp, fs)

Description
This routine generates (fractional) sample locations for frequency-modulated 
impulses.
len number of samples
freq pitch frequency (Hz)
fmFreq vibrato frequency (Hz) (defaults to 6 Hz)
fmAmp max change in pitch (defaults to 5% of freq)
fs sample frequency (defaults to 22254.545454 samples/s)

The basic formula for the phase angle is

The output of this routine is a list of glottal pulse locations that can be used by the 
MakeVowel routine.

Examples
The MakeVowel routine is used to synthesize simple vowels. More realistic sounding 
vowels are possible with a bit of vibrato added to them using the FMPoints routine.

»u=MakeVowel(20000,FMPoints(20000,120), 22050,'u');
»soundsc(u/max(u), 22050)

Acknowledgments
This routine was written by Richard O. Duda of San Jose State University.

θ 2π freq t⋅ ⋅ fmAmp/fmFreq 2πfmFreq t⋅( )sin⋅+=
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FreqResp

Purpose
Evaluate frequency response of a second order filter

Synopsis
mag = FreqResp(filter, f, fs)

Description
Find the frequency response (in dB) of a filter (1x5 vector) at frequency f assuming a 
sampling rate fs. A vector of frequencies can be used as input.

The filter is a biquadratic section with a transfer function equal to

.

The filter is described by a five element row vector with the filter’s coefficients equal 
to [B0 B1 B2 A1 A2].

Examples
The FreqResp function can be used to evaluate the second filter in the default filter 
bank shown in the DesignLyonFilters example.

»f=10:10:7990;
»resp=FreqResp([0.8373 0 -0.8373 1.6433 .6772], ...

 f, 16000);
»semilogx(f,resp);

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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LyonPassiveEar

Purpose
Calculate auditory nerve responses using Lyon’s passive cochlear model

Synopsis
y=LyonPassiveEar(x,sr,df,earQ,stepfactor,diff,agcf,taufactor)

Description
This m-function calculates the probability of firing along the auditory nerve due to a 
input sound, x, with a sample rate, sr. The remaining arguments are optional parame-
ters of the cochlear model implementation and are described below. The default 
value for each parameter is shown in parenthesis.
df (1) Decimation Factor - How much to decimate the model’s output. 

Normally the cochlear model produces one output per channel at 
each sample time. This parameters allows the output to be decimated 
in time (using a filter to reduce aliasing. See the taufactor parame-
ter.)

earQ (8) Quality Factor - The quality factor of a filter is a measure of its band-
width. In this case it measures the ratio of the width of each band-
pass filter at a point 3dB down from the maximum. Normally, 
critical band filters have a Q of about 8. Smaller values of earQ 
mean broader cochlear filters.

stepfactor Filter stepping factor - Each filter in a filter bank is overlapped by a 
fixed fraction given by this parameter. The default value is given by 
earQ/32. Thus normal filters (q=8) are overlapped by 25%.

differ (1) Channel Difference Flag - Adjacent filter channels can be subtracted 
to further improve the model’s frequency response. This parameter 
is a flag; non-zero values indicate the channel differences should be 
computed.

agcf (1) Automatic Gain Control Flag - An automatic gain control is used to 
model neural adaptation. This flag turns the adaptation mechanism 
on and off.

taufactor (3) Filter Decimation Tau Factor - When the output of the cochlear 
model is decimated, a low pass filter is applied to each channel to 
reduce the high frequency content and minimize aliasing. The filter’s 
time constant (tau) is set to the decimation factor multiplied by this 
argument. Larger values for the taufactor mean less high frequency 
information is passed.

Note this function resets the filter state each time it is run. The default state of the 
AGC filters is zero, so the cochlear model is very sensitive to initial sounds.

Examples
Calculate the impulse response with 

»is=LyonPassiveEar([1 zeros(1,255)],16000,1);
»imagesc(min(is, 0.0004))

The image is clipped so it shows an output range between 0 and 0.0004, which is the 
maximum target range of the last AGC stage. This is necessary because the impulse 
has such a fast attack that the AGC can’t limit the output fast enough. The response 
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looks like

A sine wave (1kHz) is generated and run through the standard cochlear model using 
the following code.

»s=sin((0:2041)/20000*2*pi*1000);
»ys=LyonPassiveEar(s,20000,20);
»imagesc(ys);

The resulting image looks like this:

Finally, a cochleagram of the ‘A huge tapestry hung in her hallway’ utterance from 
the TIMIT database (TRAIN/DR5/FCDR1/SX106/SX106.ADC) is shown below. It 
was computed using the following command line.

»coch=LyonPassiveEar(tap,16000,100);
»imagesc(coch);
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See Also
“Lyon’s Cochlear Model”, by Malcolm Slaney and published as Apple Technical 
Report #13 (1988) describes the implementation of this particular cochlear model. 
This report is also available at

http://web.interval.com/~malcolm/pubs.html#LyonCochlear

DesignLyonFilters, soscascade, agc
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MakeERBFilters

Purpose
Design the filters needed to implement an ERB cochlear model.

Synopsis
fcoefs = MakeERBFilters(fs,numChannels,lowFreq)

Description
This function computes the filter coefficients for a bank of Gammatone filters.  These 
filters were defined by Patterson and Holdworth for simulating the cochlea.  

The result is returned as an array of filter coefficients.  Each row of the filter arrays 
contains the coefficients for four second order filters.  The transfer function for these 
four filters share the same denominator (poles) but have different numerators (zeros).  
All of these coefficients are assembled into one vector that the ERBFilterBank func-
tion can take apart to implement the filter.

The filter bank contains numChannels channels that extend from half the sampling 
rate (fs) to lowFreq.

Note this implementation fixes a problem in the original code. The original version 
calculated a single eighth-order polynomial representing the entire filter function. 
This new version computes four separate second order filters.  This avoids a problem 
with round off errors in cases with very small characteristic frequencies (<100Hz) 
and large sample rates (>44kHz).  The problem is caused by roundoff error when a 
number of poles are combined, all very close to the unit circle.  Small errors in the 
eighth-order coefficient, are magnified when the eighth root is taken to give the pole 
location.  These small errors lead to poles outside the unit circle and instability.  
Thanks to Julius Smith for pointer me to the proper explanation.

Examples
The ten ERB filters between 100 and 8000Hz are computed using

»fcoefs = MakeERBFilters(16000,10,100);
The resulting frequency response is given by

»y = ERBFilterBank([1 zeros(1,511)], fcoefs);
»resp = 20*log10(abs(fft(y')));
»freqScale = (0:511)/512*16000;
»semilogx(freqScale(1:255),resp(1:255,:));
»axis([100 16000 -60 0])
»xlabel('Frequency (Hz)'); 
»ylabel('Filter Response (dB)');

A simple cochlear model can be formed by filtering an utterance with these filters. To 
convert this data into an image we pass each row of the cochleagram through a half-
wave-rectifier, a low-pass filter, and then decimate by a factor of 100. A cochleagram 
of the ‘A huge tapestry hung in her hallway’ utterance from the TIMIT database 
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(TRAIN/DR5/FCDR1/SX106/SX106.ADC) is shown below. It was computed using 
the following commands.

»fcoefs=MakeERBFilters(16000,40,100);
»coch=ERBFilterBank(tap, fcoefs);
»for j=1:size(coch,1)

c=max(coch(j,:),0);
c=filter([1],[1 -.99],c);
coch(j,:)=c;

end
»imagesc(coch);

Unlike the other cochlear models in this report, there is no adaptation or automatic 
gain control to equalize the formant frequencies and enhance the onsets. The 
MeddisHairCell (27) function can be used to do this.

See Also
Malcolm Slaney, An Efficient Implementation of the Patterson-Holdsworth Auditory 
Filter Bank, Apple Computer Technical Report #35, 1993. This report is also avail-
able at

http://web.interval.com/~malcolm/pubs.html#Gammatone
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MakeVowel

Purpose
Simple vowel synthesis

Synopsis
y = MakeVowel(len, pitch, sampleRate, f1, f2, f3)

Description
Make a vowel with length samples and the given pitch. The vowel’s sample rate is 
given by sampleRate. The formant frequencies are f1, f2 & f3. The formant frequen-
cies for these English vowels are given by:

Vowel f1 f2  f3
/a/ 730 1090 2440
/i/ 270 2290 3010
/u/ 300 870 2240

The pitch variable can either be a scalar indicating the actual pitch frequency, or an 
array of impulse locations. Using an array of impulses allows this routine to compute 
vowels with varying pitch.

Alternatively, f1 can be replaced with one of the following strings ‘a’, ‘i’, ‘u’ and the 
appropriate formant frequencies are automatically selected.

Examples
A sequence of three vowels can be computed using

»vowels = [ MakeVowel(10000, 100, 16000,'a') ...
MakeVowel(10000, 100, 16000,'i') ... 
MakeVowel(10000, 100, 16000,'u')];

and then played with
»soundsc(vowels, 16000);

Similarly, a shorter sequence of vowels can be displayed as a spectrogram.
»vowels = [ MakeVowel(1000,100,16000,'a')...

MakeVowel(1000,100,16000,'i') ...
MakeVowel(1000,100,16000,'u')];

»s=spectrogram(vowels,256,2,2);
»imagesc(s)

Acknowledgments
The first version of this routine was written by Richard O. Duda (San Jose State Uni-
versity). Additional debugging was provided by Professor. Duda.
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MeddisHairCell

Purpose
Implement Meddis’ Inner Hair Cell Model

Synopsis
y = MeddisHairCell(data,sampleRate[,subtractSpont] )

Description
This function calculates the output of Ray Meddis’ hair cell model for a number of 
channels. Data is arrayed as one auditory channel per row. All channels are done in 
parallel (but each time step is sequential) so it is much more efficient to process lots 
of channels at once.

The subtractSpont argument is optional. If this argument is positive then the hair 
cell’s spontaneous rate is subtracted before the result is returned.

Examples
This MEX function can be checked by comparing the results to those published in 
Ray Meddis’ 1986 JASA paper. The first two statements generate a sequence of tone 
pips, each 250 ms long, ranging in amplitude from 40dB to 80 dB in 5dB steps. Note 
the amplitude scale is arbitrary. In this case it was chosen to agree with the examples 
shown in his 1990 paper.

»tone=sin((0:4999)/20000*2*pi*1000);
»s=[zeros(1,5000) ...
 tone*10^(40/20-1.35) zeros(1,5000) ...
 tone*10^(45/20-1.35) zeros(1,5000) ...
 tone*10^(50/20-1.35) zeros(1,5000) ...
 tone*10^(55/20-1.35) zeros(1,5000) ...
 tone*10^(60/20-1.35) zeros(1,5000) ...
 tone*10^(65/20-1.35) zeros(1,5000) ...
 tone*10^(70/20-1.35) zeros(1,5000) ...
 tone*10^(75/20-1.35) zeros(1,5000) ...
 tone*10^(80/20-1.35)];
»y=MeddisHairCell(s,20000);
»plot((1:90000)/20000,y(1:90000))

This hair cell model can be added to the back-end of a Gammatone filter bank to 
form a “complete” auditory model. A cochleagram of the ‘A huge tapestry hung in 
her hallway’ utterance from the TIMIT database (TRAIN/DR5/FCDR1/SX106/
SX106.ADC) is shown below. The output of the filter-bank is scaled by a factor of 80 
to put this particular result in the correct range for the hair cell model. The filtering 
operation in the loop and the decimation are performed to reduce the amount of data 
to display. The cochleagram was computed using the following commands.
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»[frwd,fdbk]=MakeERBFilters(16000,80,100);
»coch=ERBFilterBank(frwd,fdbk,tap);
»hc=MeddisHairCell(coch/max(max(coch))*80,16000,1);
»for j=1:80

c=hc(j,:);
c=filter([1],[1, -.99],c);
h(j,:)=c(1:100:50381);

 end
»imagesc(h);

See Also
R. Meddis, “Simulation of mechanical to neural transduction in the auditory 
recepter,” Journal of the Acoustical Society of America, vol.79, no.3, p. 702-711, 
March 1986.

M. J. Hewitt, R. Meddis, “Implementation details of a computation model of the 
inner hair-cell/auditory-nerve synapse,” Journal of the Acoustical Society of Amer-
ica, vol.87, no.4, p. 1813-1816, April 1990.
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mfcc

Purpose
Mel-frequency cepstral coefficient transform of an audio signal

Synopsis
[ceps,freqresp,fb,fbrecon,freqrecon] = ...
 mfcc2(input, samplingRate, [frameRate])

Description
Find the mel-frequency cepstral coefficients (ceps) corresponding to the input. Three 
other quantities are optionally returned that represent the detailed FFT magnitude 
(freqresp), the log10 mel-scale filter bank output (fb), and the reconstruction of the 
filter bank output by inverting the cosine transform.

The sequence of processing includes for each chunk of data:
Window the data with a hamming window,
Shift it into FFT order,
Find the magnitude of the FFT,
Convert the FFT data into filter bank outputs,
Find the log base 10,
Find the cosine transform to reduce dimensionality.

The filter bank is constructed using 13 linearly-spaced filters (133.33Hz between 
center frequencies,) followed by 27 log-spaced filters (separated by a factor of 
1.0711703 in frequency.) Each filter is constructed by combining the amplitude of 
FFT bin as shown in the figure below.

The forty filters have this frequency response.

CF - 133Hz or CF CF + 133Hz or
CF/1.0718 CF*1.0718

Frequency

1030

0.005

0.01

Frequency
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The outputs from this routine are the MFCC coefficients and several optional inter-
mediate results and inverse results.
freqresp the detailed fft magnitude used in MFCC calculation, 256 rows.
fb the mel-scale filter bank output, 40 rows.
fbrecon the filter bank output found by inverting the cepstrals with a cosine 

transform, 40 rows.
freqrecon the smooth frequency response by interpolating the fb reconstruc-

tion, 256 channels to match the original freqresp.
This version is improved over the version in Release 1 in a number of ways. The dis-
crete-cosine transform was fixed and the reconstructions have been added.

Examples
Here is the result of calculating the cepstral coefficients of the ‘A huge tapestry hung 
in her hallway’ utterance from the TIMIT database (TRAIN/DR5/FCDR1/SX106/
SX106.ADC). The utterance is 50189 samples long at 16kHz, and all pictures are 
sampled at 100Hz and there are 312 frames. Note, the top row of the mfcc-cepstrum, 
ceps(1,:), is known as C0 and is a function of the power in the signal.Since the wave-
form in our work is normalized to be between -1 and 1, the C0 coefficients are all 
negative. The other coefficients, C1-C12, are generally zero-mean.

»tap = wavread('tapestry.wav'); 
»[ceps,freqresp,fb,fbrecon,freqrecon]= ... 

mfcc(tap,16000,100);
»imagesc(ceps); colormap(1-gray);

Several intermediate results are also generated that can be used to investigate the per-
formance of the algorithm. The uncompressed FFT spectrogram (freqresp) is shown 
below (it’s been flipped so that high frequencies are at the top.)

»imagesc(flipud(freqresp)); 

After combining several FFT channels into a single mel-scale channel, the result is 
the filter bank output. This is shown below (the fb output of the mfcc command 
includes the log10 calculation.)
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imagesc(flipud(fb));

Finally, the conversion into the cepstral domain uses the discrete cosine transform to 
reduce the dimensionality of the output. We can invert the cosine transform to get 
back into the filter bank domain and see how much information we have lost. The 
recon output is shown below (flipped again so that the high frequency channel is at 
the top). Note the result is much smoother then the original filter bank output.

»imagesc(flipud(fbrecon)); 

The original spectrogram is reproduced by resampling the result above. Note the fine 
lines indicating the pitch have been lost by the MFCC process. This is a useful fea-
ture for speech-recognition systems since they want a representation that is blind to 
pitch changes.

»imagesc(flipud(freqrecon));
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See Also
An MFCC-like algorithm was proposed by M. J. Hunt, M. Lennig, and P. Mermel-
stein, “Experiments in syllable-based recognition of continuous speech,” Proceed-
ings of the 1980 ICASSP, Denver, CO, pp. 880-883, 1980.
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proclpc

Purpose
Perform LPC analysis on a speech signal

Synopsis
[aCoeff,resid,pitch,G,parcor,stream] = proclpc(data,sr,L,fr,fs,preemp)

Description
This function computes the LPC (linear-predictive coding) coefficients that describe 
a speech signal.  The LPC coefficients are a short-time measure of the speech signal 
which describe the signal as the output of an all-pole filter.  This all-pole filter pro-
vides a good description of the speech articulators; thus LPC analysis is often used in 
speech recognition and speech coding systems.  The LPC parameters are recalcu-
lated, by default in this implementation, every 20ms.

The results of LPC analysis are a new representation of the signal
s(n) = G e(n) - sum from 1 to L a(i)s(n-i)

where s(n) is the original data.  a(i) and e(n) are the outputs of the LPC analysis with 
a(i) representing the LPC model. The e(n) term represents either the speech source's 
excitation, or the residual: the details of the signal that are not captured by the LPC 
coefficients.  The G factor is a gain term.

LPC analysis is performed on a monaural sound vector (data) which has been sam-
pled at a sampling rate of sr.  The following optional parameters modify the behav-
iour of this algorithm.
L The order of the analysis.  There are L+1 LPC coefficients in the out-

put array aCoeff for each frame of data.  L defaults to 13.
fr Frame time increment, in ms.  The LPC analysis is done starting 

every fr ms in time.  Defaults to 20ms (50 LPC vectors a second)
fs Frame size in ms.  The LPC analysis is done using a rectangular 

window that is fs ms long.  Defaults to 30ms
preemp This variable is the epsilon in a digital one-zero filter which serves to 

preemphasize the speech signal and compensate for the 6dB per 
octave rolloff in the radiation function.  Defaults to .9378.

The output variables from this function are
aCoeff The LPC analysis results, a(i).  One column of L numbers for each 

frame of data
resid The LPC residual, e(n).  One column of sr*fs samples representing 

the excitation or residual of the LPC filter.
pitch A frame-by-frame estimate of the pitch of the signal, calculated by 

finding the peak in the residual's autocorrelation for each frame.
G The LPC gain for each frame.
parcor The parcor coefficients.  The parcor coefficients give the ratio 

between adjacent sections in a tubular model of the speech articula-
tors.  There are L parcor coefficients for each frame of speech.

stream The LPC analysis' residual or excitation signal as one long vector. 
Overlapping frames of the resid output combined into a new one- 
dimensional signal and post-filtered.

The synlpc routine inverts this transform and returns the original speech signal.

Examples
We illustrate LPC analysis with the ‘A huge tapestry hung in her hallway’ utterance 
from the TIMIT database (TRAIN/DR5/FCDR1/SX106/SX106.ADC). The utter-
ance is 50189 samples long at 16kHz.

We can evaluate the LPC transfer function around the unit circle to find the transfer 
function’s frequency response. The code to do this looks like this.
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»[aCoeff,resid,pitch,G] = proclpc(tap,sr,L);
»cft=0:(1/255):1;
»for nframe=1:size(aCoeff,2)
» gain=20*log10(G(nframe)) * 0;
» for index=1:size(aCoeff,1)
» gain = gain + aCoeff(index,nframe)* ...
» exp(-i*2*pi*cft).^index;
» end
» gain = abs(1./gain);
» spec(:,nframe) = 20*log10(gain(1:128))';
»end
»imagesc(flipud(spec));

The spectrogram for LPC with an 13th order analysis polynomial is shown below.

The spectrogram for LPC with a 26th order polynomial is shown below. Note how 
there is more detail in the spectrogram, because a 26th order polynomial can capture 
more details in the spectrum within each frame.

See Also
This code was graciously provided by Delores Etter (University of Colorado, Boul-
der) and Professor Geoffrey Orsak (Southern Methodist University). It was first pub-
lished in

Orsak, G.C. et al. "Collaborative SP education using the Internet 
and MATLAB," IEEE SIGNAL PROCESSING MAGAZINE, Nov. 
1995. vol.12, no.6, pp. 23-32.

Modified and debugging plots added by Kate Nguyen and Malcolm Slaney

A more complete set of routines for LPC analysis can be found at
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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rasta

Purpose
Implement the RASTA algorithm for environmental adaptation and simulating audi-
tory masking

Synopsis
y=rasta(x,fs)

Description
This function implements the RASTA (RelAtive SpecTrAl) algorithm. The RASTA 
algorithm is a common piece of a speech-recognition system’s front-end processing. 
It originally was designed to model adaptation processes in the auditory system, and 
to correct for environmental effects. Broadly speaking, it filters out the very low-fre-
quency temporal components (below 1Hz) which are often due to a changing audi-
tory environment or microphone. High frequency temporal components, above 13 
Hz, are also removed since they represent changes that are faster than the speech 
articulators can move.

The first input to this routine is an array of spectral data, as produced by the LPC or 
MFCC routines. Each row contains one “channel” of data, each column is one time 
slice. The fs parameter specifies the sampling rate,100Hz in many speech recogniti-
ion systems.

The original RASTA filter is defined only for a frame rate of 100Hz. This code is 
equal to the original at 100Hz, but scales to other frame rates. Here the RASTA filter 
is approximated by a simple fourth order Butterworth bandpass filter. 

Examples
Both MFCC and LPC analysis have the property that they turn a row of a spectro-
gram into a small number of independent, random coefficients. This makes it difficult 
to view the results directly. RASTA then processes these coefficients in time. We 
show an example of RASTA analysis here by applying RASTA to the output of the 
MFCC routine and then reconstructing the original filterbank representation by 
inverting the discrete-cosine transform. 

»tap = wavread('tapestry.wav');
»[ceps,freqresp,fb,fbrecon,freqrecon] = ...

mfcc(tap,16000,100);
»rastaout = rasta(ceps,100);

»mfccDCTMatrix = 1/sqrt(40/2)*cos((0:(13-1))' * ...
(2*(0:(40-1))+1) * pi/2/40);

»mfccDCTMatrix(1,:) = mfccDCTMatrix(1,:)*sqrt(2)/2;

»rastarecon = 0*fbrecon;
»for i=1:size(rastaout,2)
» rastarecon(:,i) = mfccDCTMatrix' * ...

rastaout(:,i);
»end
»imagesc(flipud(rastarecon));

The result below can be compared directly to the fbrecon result in the MFCC docu-
mentation on page 29. You should note that the transistions are sharper, and steady-
state features have been removed.



rasta

36

See Also
Hynek Hermansky and N. Morgan, "RASTA Processing of Speech."  IEEE Transac-
tions on Speech and Audio Processing.  vol. 2, no. 4, October 1994, pp. 578–589

Hynek Hermansky and Misha Pavel, “Rasta Model and Forward Masking.” Proceed-
ings of the NATO Advanced Studies Institute on Computational Hearing, Steven 
Greenberg and Malcolm Slaney, eds. Il Ciocco (Tuscany) Italy, 1-12 July 1998, pp. 
107–110.
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SecondOrderFilter

Purpose
Design a second order filter section

Synopsis
filter = SecondOrderFilter(f, q, fs)

Description
Design a second order digital filter with a center frequency of f, filter quality of q, 
and digital sampling rate of fs (Hz).

The filter is a biquadratic section with a transfer function equal to

.

The filter is described by a five element row vector with the filter’s coefficients equal 
to [B0 B1 B2 A1 A2].

Examples
A simple bandpass filter is formed by putting the filter’s poles near the desired center 
frequency. This is shown below.

»f=10:10:7990;
»sos=SecondOrderFilter(3000,5,16000)

sos =

    1.0000   -0.6900    0.7901

»filt=[1 0 0 sos(2:3)]

filt =

    1.0000         0         0   -0.6900    0.7901

»semilogx(f,FreqResp(filt,f,16000))

Likewise, a simple band-reject filter is formed by using a pair of zeros. The resulting 
filter looks like this.

»filt=[sos 0 0]

filt =

    1.0000   -0.6900    0.7901         0         0

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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»semilogx(f,FreqResp(filt,f,16000))

A broader filter is formed by using a lower q, in this case 2.
»sos=SecondOrderFilter(3000,2,16000)

sos =

    1.0000   -0.6212    0.5549

»filt=[sos 0 0]

filt =

    1.0000   -0.6212    0.5549         0         0

»semilogx(f,FreqResp(filt,f,16000))
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SeneffEar

Purpose
Implement Stages I and II of Seneff’s Auditory Model

Synopsis
y = SeneffEar(x, fs [, plotChannel] )

Description
This function implements Stage I (Critical Band Filter Bank) and Stage II (Hair Cell 
Synapse Model) of Seneff’s Auditory model. This routine converts an input signal, x, 
into an array of 

“detailed waveshapes of the probabilistic response to individual 
cycles of the input stimulus.” 

This model is 
“based on properties of the human auditory system. A bank of criti-
cal-band filters defines the initial spectral analysis. Filter outputs 
are processed by a model of the nonlinear transduction stages in the 
cochlea, which accounts for such features as saturation, adaptation 
and forward masking. The parameters of the model were adjusted 
to match existing experimental results of the physiology of the 
auditory periphery.”

The input data (x) is a one-dimensional array with a sampling rate of fs. The optional 
parameter plotChannel is used to indicate a channel to plot for debugging (see exam-
ple below.)

Examples
Figure 3 of Seneff’s paper (1988) can be approximated with the following statements

»s=[zeros(1,160) sin(2000*2*pi/16000*(1:1120))];
»y=SeneffEar(s,16000,15);

which produces the following plot. The results are not exactly equivalent for reasons 
I do not understand.
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A cochleagram using Seneff’s ear model of the ‘A huge tapestry hung in her hall-
way’ utterance from the TIMIT database (TRAIN/DR5/FCDR1/SX106/
SX106.ADC) is shown below. The filtering operation inside the loop and the decima-
tion are performed to reduce the amount of data to display. The cochleagram was 
computed using the following commands.

»hc=SeneffEar(tap,16000);
»for j=1:40

c=hc(j,:);
c=filter([1],[1, -.99],c);
h(j,:)=c(1:100:50381);

 end
»imagesc(h);
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SeneffEarSetup

Purpose
Design the filters for Seneff’s Auditory Model

Synopsis
[SeneffPreemphasis, SeneffFilterBank, SeneffForward, SeneffBackward] ...

= SeneffEarSetup(fs)

Description
This function designs the preemphasis and filterbank filters for Seneff’s Auditory 
Model. The only parameter to this function, fs, is the desired sampling rate of the 
digital system. See the SeneffEar command for more details.

Testing
This routine includes test code which can be turned on by setting the plotTests vari-
able to a positive value. This produces the following plot showing the filter-bank’s 
response.

Acknowledgments
This routine is based on work described by Benjamin D. Bryant and John D. Gowdy, 
“Simulation of Stages I and II of Seneff's Auditory Model (SAM) Using Matlab,” 
and published in the Proceedings of the 1993 Matlab User's Group Conference.
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The detailed description of this model can be found in Stephanie Seneff, “A joint 
synchrony/mean-rate model of auditory speech processing,” Journal of Phonetics, 
Vol. 16, pp. 55-76, 1988.
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SetGain

Purpose
Set the gain of a second order section

Synopsis
filter = SetGain(filter, desired, f, fs)

Description
Set the gain of a second order biquadratic filter section to any desired gain at any 
desired frequency, f, assuming a sampling rate of fs. The filter section is a 1x5 ele-
ment vector as produced by the SecondOrderFilter function.

Examples
This example shows a second order section designed for Lyon’s passive long-wave 
cochlear model. The frequency response is first plotted for the normal filter.

»filts=DesignSosFilters(16000);
»filt=filts(42,:)

filt =

    0.8993   -1.1193    0.8786   -1.2535    0.8899

»f=10:10:7990;
»semilogx(f,FreqResp(filt,f,16000));

Then the gain of the filter section is set to 10 (20dB) near the filter’s best frequency 
(1960 Hz). The new frequency response is plotted below.

»newFilt = SetGain(filt, 10, 1960, 16000);
»semilogx(f, FreqResp(newFilt, f, 16000));
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soscascade

Purpose
Implement a cascade of second order filters.

Synopsis
[output state]= soscascade(input, coeffs, states) 

Description
This routine implements a cascade of second order filters. A cascade of filters means 
that each filter’s output is used as input to the next filter. The number of filters defines 
the number of channels in the filter bank and each channel of the filter bank has its 
own output waveform. This block is a basic building block for Lyon’s passive long-
wave cochlear model.

The filter implemented at each stage is a biquadratic section with a transfer function 
equal to

.

Each filter is described by a five element row vector. The number of filter channels is 
equal to the number of rows in the coeffs argument to soscascade. Within each row 
the filter’s coefficients are equal to [B0 B1 B2 A1 A2].

The states argument is optional. If the input has N samples then:
coeffs is C x 5 where C is the number of channels
output is C x N
state is C x 2

Examples
Test this command by trying the following command. The correct results are shown 
below. The first filter is a simple exponential decay. The second filter sums the imme-
diately preceeding outputs (in time) from the first filter.

>>soscascade([1 0 0 0 0],[1 0 0 -.9 0;1 1 0 0 0]) 

ans =
 

 1.0000    0.9000    0.8100    0.7290    0.6561
  1.0000    1.9000    1.7100    1.5390    1.3851

See Also
LyonPassiveEar 

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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sosfilters

Purpose
Implement a bank of second order filters.

Synopsis
[output state] = sosfilters(input, coeffs, states) 

Description
This routine implements a bank of second order filters. Each channel of the filter 
bank is independent of the other filters. The number of filters defines the number of 
channels in the filter bank and each channel of the filter bank has its own output 
waveform. This block is a basic building block for the Patterson-Holdsworth ERB 
cochlear model.

The filter implemented at each stage is a biquadratic section with a transfer function 
equal to

.

Each filter is described by a five element row vector. The number of filter channels is 
equal to the number of rows in the coeffs argument to soscascade. Within each row 
the filter’s coefficients are equal to [B0 B1 B2 A1 A2].

The states argument is optional. If the input has N samples and there are C channels, 
then:

input is 1 x N or C x N
coeffs is 1 x 5 or C x 5
state is max(1,C) x 2
output is max(1,C) x N

Examples
Test this command by trying the following commands. The correct results are shown 
below. The first example filters an impulse with two low pass filters.

»sosfilters([1 0 0 0 0 0],[1 0 0 -.9 0;1 0 0 -.8 0])

ans =

    1.0000   0.9000   0.8100   0.7290   0.6561    0.5905
    1.0000   0.8000   0.6400   0.5120   0.4096    0.3277

The next example shows a variant; multiple input arrays, one per filter channel.
»sosfilters([1 0 0 0 0 0;2 0 0 0 0 0], ...
            [1 0 0 -.9 0;1 0 0 -.8 0])

ans =

    1.0000   0.9000   0.8100   0.7290   0.6561    0.5905
    2.0000   1.6000   1.2800   1.0240   0.8192    0.6554

Finally, multiple input arrays can be filtered by a single filter.
»sosfilters([1 0 0 0 0 0;2 0 0 0 0 0],[1 0 0 -.9 0])

ans =

    1.0000   0.9000   0.8100   0.7290   0.6561    0.5905
    2.0000   1.8000   1.6200   1.4580   1.3122    1.1810

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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See Also
soscascade
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spectrogram

Purpose
Compute the spectrogram of a signal

Synopsis
[specgram raw] = spectrogram(wave,segsize,nlap,ntrans)

Description
Compute a short-time Fourier transform (STFT) or spectrogram of a one-dimen-
sional signal. The following optional arguments are used to control the window size, 
overlap, and thus the image quality.
segsize(128) Size of a segment of data used to calculate each frame. This deter-

mines the basic frequency resolution of the spectrogram. Smaller 
segment sizes give more detailed time resolution, but at the expense 
of frequency resolution.

nlap (8) Number of hamming windows overlapping a point. Larger overlaps 
give better resolution in the time domain.

ntrans (4) Factor by which transform is bigger than segment, larger sizes mag-
nify the frequency axis, but don’t really give any better resolution.

This function returns a spectrogram specgram compressed with the square root of the 
maximum amplitude (fourth root of power). The optional raw output returns the 
unprocessed spectrogram data.

Example
A spectrogram of the ‘A huge tapestry hung in her hallway’ utterance from the 
TIMIT database (TRAIN/DR5/FCDR1/SX106/SX106.ADC) is shown below. It was 
computed using the following command line.

»spec=spectrogram(tap,64,2,1);
»imagesc(spec);

Author
Richard F. Lyon wrote the stabilization code and the smoothing algorithm.
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synlpc

Purpose
Synthesize a speech signal from its LPC coefficients

Synopsis
synWave = synlpc(aCoeff,source,sr,G,fr,fs,preemp)

Description
This function synthesizes a (speech) signal based on a LPC (linear- predictive cod-
ing) model of the signal.  The LPC coefficients are a short-time measure of the 
speech signal which describe the signal as the output of an all-pole filter.  This all-
pole filter provides a good description of the speech articulators; thus LPC analysis is 
often used in speech recognition and speech coding systems.  The LPC analysis is 
done using the proclpc routine.  This routine can be used to verify that the LPC anal-
ysis produces the correct answer, or as a synthesis stage after first modifying the LPC 
model.

The results of LPC analysis are a new representation of the signal
s(n) = G e(n) - sum from 1 to L a(i)s(n-i)

where s(n) is the original data.  a(i) and e(n) are the outputs of the LPC analysis with 
a(i) representing the LPC model. The e(n) term represents either the speech source's 
excitation, or the residual: the details of the signal that are not captured by the LPC 
coefficients.  The G factor is a gain term.

LPC synthesis produces a monaural sound vector, synWave, which is sampled at a 
sampling rate of sr.  The following parameters are mandatory 
aCoeff The LPC analysis results, a(i).  One column of L+1 numbers for 

each frame of data.  The number of rows of aCoeff determines L.
source The LPC residual, e(n).  One column of sr x fs samples representing 

the excitation or residual of the LPC filter.
G The LPC gain for each frame.

The following parameters are optional and default to the indicated values.
fr Frame time increment, in ms.  The LPC analysis is done starting 

every fr ms in time.  Defaults to 20ms (50 LPC vectors a second)
fs Frame size in ms.  The LPC analysis is done by windowing the 

speech data with a rectangular window that is fs ms long.  Defaults 
to 30ms 

preemp This variable is the epsilon in a digital one-zero filter which serves to 
preemphasize the speech signal and compensate for the 6dB per 
octave rolloff in the radiation function.  Defaults to .9378.

Examples
A simple analysis-resynthesis combination is easy to implement

»[aCoeff,resid,pitch,G,parcor,stream] = ...
proclpc(tap,sr,13);

»syntap = synlpc(aCoeff, stream, sr, G);;
»soundsc(syntap,16000);

Like wise, a simple voice transformation is implemented by changing the residual to 
a pure noise signal. The resulting speech sounds whispered.

»[aCoeff,resid,pitch,G,parcor,stream] = ...
proclpc(tap,sr,13);

»stream=randn(size(stream));
»syntap = synlpc(aCoeff, stream, sr, G);;
»soundsc(syntap,16000);
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See Also
This code was graciously provided by Delores Etter (University of Colorado, Boul-
der) and Professor Geoffrey Orsak (Southern Methodist University). It was first pub-
lished in

Orsak, G.C. et al. “Collaborative SP education using the Internet 
and MATLAB,” IEEE SIGNAL PROCESSING MAGAZINE, Nov. 
1995. vol.12, no.6, pp. 23-32.

Modified and debugging plots added by Kate Nguyen and Malcolm Slaney

A more complete set of routines for LPC analysis can be found at
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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WhiteVowel

Purpose
Demonstrate the effect of whitening one portion of a speech signal

Synopsis
[output,aCoeff] = WhiteVowel(data,sr,L,pos)

Description
Speech is often described as having spectral peaks or formants which dentify the 
phonetic signal. An interesting experiment filters a speech signal to remove all the 
formant information at one time during the speech. If there are no formant peaks, 
how can the speech be understood?  It turns out that processing, much like RASTA, 
means that relative changes in spectrum are the most important, thus the speech sig-
nal is understood because the formant transitions carry the information.  This gives 
speech an important transparency due 

This function takes a speech signal (data) with a given sampling rate (sr). It then 
finds the L-order LPC filter that describes the speech at the given position (pos ms).  
The entire speech signal is then filtered with the inverse of the LPC filter, effectively 
turning the speech spectrum at the given time white (flat).

Examples
The tapestry utterance can be filtered so that the 50th frame is white. The computa-
tion is shown below.

»whitetap = WhiteVowel(tap,16000,13,1000);
»soundsc(whitetap, 16000);

A debugging plot shows the spectrogram before and after whitening. Note that the 
overall variation of the spectral slide is much reduced after filtering.
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