wolffd@0: function sMap = som_randinit(D, varargin) wolffd@0: wolffd@0: %SOM_RANDINIT Initialize a Self-Organizing Map with random values. wolffd@0: % wolffd@0: % sMap = som_randinit(D, [[argID,] value, ...]) wolffd@0: % wolffd@0: % sMap = som_randinit(D); wolffd@0: % sMap = som_randinit(D,sMap); wolffd@0: % sMap = som_randinit(D,'munits',100,'hexa'); wolffd@0: % wolffd@0: % Input and output arguments ([]'s are optional): wolffd@0: % D The training data. wolffd@0: % (struct) data struct wolffd@0: % (matrix) data matrix, size dlen x dim wolffd@0: % [argID, (string) Parameters affecting the map topology are given wolffd@0: % value] (varies) as argument ID - argument value pairs, listed below. wolffd@0: % wolffd@0: % sMap (struct) map struct wolffd@0: % wolffd@0: % Here are the valid argument IDs and corresponding values. The values wolffd@0: % which are unambiguous (marked with '*') can be given without the wolffd@0: % preceeding argID. wolffd@0: % 'munits' (scalar) number of map units wolffd@0: % 'msize' (vector) map size wolffd@0: % 'lattice' *(string) map lattice: 'hexa' or 'rect' wolffd@0: % 'shape' *(string) map shape: 'sheet', 'cyl' or 'toroid' wolffd@0: % 'topol' *(struct) topology struct wolffd@0: % 'som_topol','sTopol' = 'topol' wolffd@0: % 'map' *(struct) map struct wolffd@0: % 'som_map','sMap' = 'map' wolffd@0: % wolffd@0: % For more help, try 'type som_randinit' or check out online documentation. wolffd@0: % See also SOM_MAP_STRUCT, SOM_LININIT, SOM_MAKE. wolffd@0: wolffd@0: %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wolffd@0: % wolffd@0: % som_randinit wolffd@0: % wolffd@0: % PURPOSE wolffd@0: % wolffd@0: % Initializes a SOM with random values. wolffd@0: % wolffd@0: % SYNTAX wolffd@0: % wolffd@0: % sMap = som_randinit(D) wolffd@0: % sMap = som_randinit(D,sMap); wolffd@0: % sMap = som_randinit(D,'munits',100,'hexa'); wolffd@0: % wolffd@0: % DESCRIPTION wolffd@0: % wolffd@0: % Initializes a SOM with random values. If necessary, a map struct wolffd@0: % is created first. For each component (xi), the values are uniformly wolffd@0: % distributed in the range of [min(xi) max(xi)]. wolffd@0: % wolffd@0: % REQUIRED INPUT ARGUMENTS wolffd@0: % wolffd@0: % D The training data. wolffd@0: % (struct) Data struct. If this is given, its '.comp_names' and wolffd@0: % '.comp_norm' fields are copied to the map struct. wolffd@0: % (matrix) data matrix, size dlen x dim wolffd@0: % wolffd@0: % OPTIONAL INPUT ARGUMENTS wolffd@0: % wolffd@0: % argID (string) Argument identifier string (see below). wolffd@0: % value (varies) Value for the argument (see below). wolffd@0: % wolffd@0: % The optional arguments can be given as 'argID',value -pairs. If an wolffd@0: % argument is given value multiple times, the last one is used. wolffd@0: % wolffd@0: % Here are the valid argument IDs and corresponding values. The values wolffd@0: % which are unambiguous (marked with '*') can be given without the wolffd@0: % preceeding argID. wolffd@0: % 'dlen' (scalar) length of the training data wolffd@0: % 'data' (matrix) the training data wolffd@0: % *(struct) the training data wolffd@0: % 'munits' (scalar) number of map units wolffd@0: % 'msize' (vector) map size wolffd@0: % 'lattice' *(string) map lattice: 'hexa' or 'rect' wolffd@0: % 'shape' *(string) map shape: 'sheet', 'cyl' or 'toroid' wolffd@0: % 'topol' *(struct) topology struct wolffd@0: % 'som_topol','sTopol' = 'topol' wolffd@0: % 'map' *(struct) map struct wolffd@0: % 'som_map','sMap' = 'map' wolffd@0: % wolffd@0: % OUTPUT ARGUMENTS wolffd@0: % wolffd@0: % sMap (struct) The initialized map struct. wolffd@0: % wolffd@0: % EXAMPLES wolffd@0: % wolffd@0: % sMap = som_randinit(D); wolffd@0: % sMap = som_randinit(D,sMap); wolffd@0: % sMap = som_randinit(D,sTopol); wolffd@0: % sMap = som_randinit(D,'msize',[10 10]); wolffd@0: % sMap = som_randinit(D,'munits',100,'hexa'); wolffd@0: % wolffd@0: % SEE ALSO wolffd@0: % wolffd@0: % som_map_struct Create a map struct. wolffd@0: % som_lininit Initialize a map using linear initialization algorithm. wolffd@0: % som_make Initialize and train self-organizing map. wolffd@0: wolffd@0: % Copyright (c) 1997-2000 by the SOM toolbox programming team. wolffd@0: % http://www.cis.hut.fi/projects/somtoolbox/ wolffd@0: wolffd@0: % Version 1.0beta ecco 100997 wolffd@0: % Version 2.0beta juuso 101199 wolffd@0: wolffd@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wolffd@0: %% check arguments wolffd@0: wolffd@0: % data wolffd@0: if isstruct(D), wolffd@0: data_name = D.name; wolffd@0: comp_names = D.comp_names; wolffd@0: comp_norm = D.comp_norm; wolffd@0: D = D.data; wolffd@0: struct_mode = 1; wolffd@0: else wolffd@0: data_name = inputname(1); wolffd@0: struct_mode = 0; wolffd@0: end wolffd@0: [dlen dim] = size(D); wolffd@0: wolffd@0: % varargin wolffd@0: sMap = []; wolffd@0: sTopol = som_topol_struct; wolffd@0: sTopol.msize = 0; wolffd@0: munits = NaN; wolffd@0: i=1; wolffd@0: while i<=length(varargin), wolffd@0: argok = 1; wolffd@0: if ischar(varargin{i}), wolffd@0: switch varargin{i}, wolffd@0: case 'munits', i=i+1; munits = varargin{i}; sTopol.msize = 0; wolffd@0: case 'msize', i=i+1; sTopol.msize = varargin{i}; wolffd@0: munits = prod(sTopol.msize); wolffd@0: case 'lattice', i=i+1; sTopol.lattice = varargin{i}; wolffd@0: case 'shape', i=i+1; sTopol.shape = varargin{i}; wolffd@0: case {'som_topol','sTopol','topol'}, i=i+1; sTopol = varargin{i}; wolffd@0: case {'som_map','sMap','map'}, i=i+1; sMap = varargin{i}; sTopol = sMap.topol; wolffd@0: case {'hexa','rect'}, sTopol.lattice = varargin{i}; wolffd@0: case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; wolffd@0: otherwise argok=0; wolffd@0: end wolffd@0: elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), wolffd@0: switch varargin{i}.type, wolffd@0: case 'som_topol', wolffd@0: sTopol = varargin{i}; wolffd@0: case 'som_map', wolffd@0: sMap = varargin{i}; wolffd@0: sTopol = sMap.topol; wolffd@0: otherwise argok=0; wolffd@0: end wolffd@0: else wolffd@0: argok = 0; wolffd@0: end wolffd@0: if ~argok, wolffd@0: disp(['(som_topol_struct) Ignoring invalid argument #' num2str(i)]); wolffd@0: end wolffd@0: i = i+1; wolffd@0: end wolffd@0: wolffd@0: if ~isempty(sMap), wolffd@0: [munits dim2] = size(sMap.codebook); wolffd@0: if dim2 ~= dim, error('Map and data must have the same dimension.'); end wolffd@0: end wolffd@0: wolffd@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wolffd@0: %% create map wolffd@0: wolffd@0: % map struct wolffd@0: if ~isempty(sMap), wolffd@0: sMap = som_set(sMap,'topol',sTopol); wolffd@0: else wolffd@0: if ~prod(sTopol.msize), wolffd@0: if isnan(munits), wolffd@0: sTopol = som_topol_struct('data',D,sTopol); wolffd@0: else wolffd@0: sTopol = som_topol_struct('data',D,'munits',munits,sTopol); wolffd@0: end wolffd@0: end wolffd@0: sMap = som_map_struct(dim, sTopol); wolffd@0: end wolffd@0: wolffd@0: if struct_mode, wolffd@0: sMap = som_set(sMap,'comp_names',comp_names,'comp_norm',comp_norm); wolffd@0: end wolffd@0: wolffd@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wolffd@0: %% initialization wolffd@0: wolffd@0: % train struct wolffd@0: sTrain = som_train_struct('algorithm','randinit'); wolffd@0: sTrain = som_set(sTrain,'data_name',data_name); wolffd@0: wolffd@0: munits = prod(sMap.topol.msize); wolffd@0: sMap.codebook = rand([munits dim]); wolffd@0: wolffd@0: % set interval of each component to correct value wolffd@0: for i = 1:dim, wolffd@0: inds = find(~isnan(D(:,i)) & ~isinf(D(:,i))); wolffd@0: if isempty(inds), mi = 0; ma = 1; wolffd@0: else ma = max(D(inds,i)); mi = min(D(inds,i)); wolffd@0: end wolffd@0: sMap.codebook(:,i) = (ma - mi) * sMap.codebook(:,i) + mi; wolffd@0: end wolffd@0: wolffd@0: % training struct wolffd@0: sTrain = som_set(sTrain,'time',datestr(now,0)); wolffd@0: sMap.trainhist = sTrain; wolffd@0: wolffd@0: return; wolffd@0: wolffd@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%