wolffd@0: % This is like robot1, except we only use a Kalman filter. wolffd@0: % The goal is to study how the precision matrix changes. wolffd@0: wolffd@0: seed = 1; wolffd@0: rand('state', seed); wolffd@0: randn('state', seed); wolffd@0: wolffd@0: if 0 wolffd@0: T = 20; wolffd@0: ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ... wolffd@0: repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)]; wolffd@0: else wolffd@0: T = 60; wolffd@0: ctrl_signal = repmat([1 0]', 1, T); wolffd@0: end wolffd@0: wolffd@0: nlandmarks = 6; wolffd@0: if 0 wolffd@0: true_landmark_pos = [1 1; wolffd@0: 4 1; wolffd@0: 4 4; wolffd@0: 1 4]'; wolffd@0: else wolffd@0: true_landmark_pos = 10*rand(2,nlandmarks); wolffd@0: end wolffd@0: if 0 wolffd@0: figure(1); clf wolffd@0: hold on wolffd@0: for i=1:nlandmarks wolffd@0: %text(true_landmark_pos(1,i), true_landmark_pos(2,i), sprintf('L%d',i)); wolffd@0: plot(true_landmark_pos(1,i), true_landmark_pos(2,i), '*') wolffd@0: end wolffd@0: hold off wolffd@0: end wolffd@0: wolffd@0: init_robot_pos = [0 0]'; wolffd@0: wolffd@0: true_robot_pos = zeros(2, T); wolffd@0: true_data_assoc = zeros(1, T); wolffd@0: true_rel_dist = zeros(2, T); wolffd@0: for t=1:T wolffd@0: if t>1 wolffd@0: true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t); wolffd@0: else wolffd@0: true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t); wolffd@0: end wolffd@0: nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos')); wolffd@0: %true_data_assoc(t) = nn; wolffd@0: %true_data_assoc = wrap(t, nlandmarks); % observe 1, 2, 3, 4, 1, 2, ... wolffd@0: true_data_assoc = sample_discrete(normalise(ones(1,nlandmarks)),1,T); wolffd@0: true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t); wolffd@0: end wolffd@0: wolffd@0: R = 1e-3*eye(2); % noise added to observation wolffd@0: Q = 1e-3*eye(2); % noise added to robot motion wolffd@0: wolffd@0: % Create data set wolffd@0: obs_noise_seq = sample_gaussian([0 0]', R, T)'; wolffd@0: obs_rel_pos = true_rel_dist + obs_noise_seq; wolffd@0: %obs_rel_pos = true_rel_dist; wolffd@0: wolffd@0: wolffd@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wolffd@0: % Create params for inference wolffd@0: wolffd@0: % X(t) = A X(t-1) + B U(t) + noise(Q) wolffd@0: wolffd@0: % [L1] = [1 ] * [L1] + [0] * Ut + [0 ] wolffd@0: % [L2] [ 1 ] [L2] [0] [ 0 ] wolffd@0: % [R ]t [ 1] [R ]t-1 [1] [ Q] wolffd@0: wolffd@0: % Y(t)|S(t)=s = C(s) X(t) + noise(R) wolffd@0: % Yt|St=1 = [1 0 -1] * [L1] + R wolffd@0: % [L2] wolffd@0: % [R ] wolffd@0: wolffd@0: % Create indices into block structure wolffd@0: bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space wolffd@0: robot_block = block(nlandmarks+1, bs); wolffd@0: for i=1:nlandmarks wolffd@0: landmark_block(:,i) = block(i, bs)'; wolffd@0: end wolffd@0: Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot wolffd@0: Ysz = 2; % observe relative location wolffd@0: Usz = 2; % input is (dx, dy) wolffd@0: wolffd@0: wolffd@0: % create block-diagonal trans matrix for each switch wolffd@0: A = zeros(Xsz, Xsz); wolffd@0: for i=1:nlandmarks wolffd@0: bi = landmark_block(:,i); wolffd@0: A(bi, bi) = eye(2); wolffd@0: end wolffd@0: bi = robot_block; wolffd@0: A(bi, bi) = eye(2); wolffd@0: A = repmat(A, [1 1 nlandmarks]); % same for all switch values wolffd@0: wolffd@0: % create block-diagonal system cov wolffd@0: wolffd@0: wolffd@0: Qbig = zeros(Xsz, Xsz); wolffd@0: bi = robot_block; wolffd@0: Qbig(bi,bi) = Q; % only add noise to robot motion wolffd@0: Qbig = repmat(Qbig, [1 1 nlandmarks]); wolffd@0: wolffd@0: % create input matrix wolffd@0: B = zeros(Xsz, Usz); wolffd@0: B(robot_block,:) = eye(2); % only add input to robot position wolffd@0: B = repmat(B, [1 1 nlandmarks]); wolffd@0: wolffd@0: % create observation matrix for each value of the switch node wolffd@0: % C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn. wolffd@0: % This computes L(i) - R wolffd@0: C = zeros(Ysz, Xsz, nlandmarks); wolffd@0: for i=1:nlandmarks wolffd@0: C(:, landmark_block(:,i), i) = eye(2); wolffd@0: C(:, robot_block, i) = -eye(2); wolffd@0: end wolffd@0: wolffd@0: % create observation cov for each value of the switch node wolffd@0: Rbig = repmat(R, [1 1 nlandmarks]); wolffd@0: wolffd@0: % initial conditions wolffd@0: init_x = zeros(Xsz, 1); wolffd@0: init_v = zeros(Xsz, Xsz); wolffd@0: bi = robot_block; wolffd@0: init_x(bi) = init_robot_pos; wolffd@0: %init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn wolffd@0: init_V(bi, bi) = Q; % simualate uncertainty due to 1 motion step wolffd@0: for i=1:nlandmarks wolffd@0: bi = landmark_block(:,i); wolffd@0: init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns wolffd@0: %init_x(bi) = true_landmark_pos(:,i); wolffd@0: %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns wolffd@0: end wolffd@0: wolffd@0: %k = nlandmarks-1; % exact wolffd@0: k = 3; wolffd@0: ndx = {}; wolffd@0: for t=1:T wolffd@0: landmarks = unique(true_data_assoc(t:-1:max(t-k,1))); wolffd@0: tmp = [landmark_block(:, landmarks) robot_block']; wolffd@0: ndx{t} = tmp(:); wolffd@0: end wolffd@0: wolffd@0: [xa, Va] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... wolffd@0: 'model', true_data_assoc, 'u', ctrl_signal, 'B', B, ... wolffd@0: 'ndx', ndx); wolffd@0: wolffd@0: [xe, Ve] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... wolffd@0: 'model', true_data_assoc, 'u', ctrl_signal, 'B', B); wolffd@0: wolffd@0: wolffd@0: if 0 wolffd@0: est_robot_pos = x(robot_block, :); wolffd@0: est_robot_pos_cov = V(robot_block, robot_block, :); wolffd@0: wolffd@0: for i=1:nlandmarks wolffd@0: bi = landmark_block(:,i); wolffd@0: est_landmark_pos(:,i) = x(bi, T); wolffd@0: est_landmark_pos_cov(:,:,i) = V(bi, bi, T); wolffd@0: end wolffd@0: end wolffd@0: wolffd@0: wolffd@0: wolffd@0: nrows = 10; wolffd@0: stepsize = T/(2*nrows); wolffd@0: ts = 1:stepsize:T; wolffd@0: wolffd@0: if 1 % plot wolffd@0: wolffd@0: clim = [0 max(max(Va(:,:,end)))]; wolffd@0: wolffd@0: figure(2) wolffd@0: if 0 wolffd@0: imagesc(Ve(1:2:end,1:2:end, T)) wolffd@0: clim = get(gca,'clim'); wolffd@0: else wolffd@0: i = 1; wolffd@0: for t=ts(:)' wolffd@0: subplot(nrows,2,i) wolffd@0: i = i + 1; wolffd@0: imagesc(Ve(1:2:end,1:2:end, t)) wolffd@0: set(gca, 'clim', clim) wolffd@0: colorbar wolffd@0: end wolffd@0: end wolffd@0: suptitle('exact') wolffd@0: wolffd@0: wolffd@0: figure(3) wolffd@0: if 0 wolffd@0: imagesc(Va(1:2:end,1:2:end, T)) wolffd@0: set(gca,'clim', clim) wolffd@0: else wolffd@0: i = 1; wolffd@0: for t=ts(:)' wolffd@0: subplot(nrows,2,i) wolffd@0: i = i+1; wolffd@0: imagesc(Va(1:2:end,1:2:end, t)) wolffd@0: set(gca, 'clim', clim) wolffd@0: colorbar wolffd@0: end wolffd@0: end wolffd@0: suptitle('approx') wolffd@0: wolffd@0: wolffd@0: figure(4) wolffd@0: i = 1; wolffd@0: for t=ts(:)' wolffd@0: subplot(nrows,2,i) wolffd@0: i = i+1; wolffd@0: Vd = Va(1:2:end,1:2:end, t) - Ve(1:2:end,1:2:end,t); wolffd@0: imagesc(Vd) wolffd@0: set(gca, 'clim', clim) wolffd@0: colorbar wolffd@0: end wolffd@0: suptitle('diff') wolffd@0: wolffd@0: end % all plot wolffd@0: wolffd@0: wolffd@0: for t=1:T wolffd@0: i = 1:2*nlandmarks; wolffd@0: denom = Ve(i,i,t) + (Ve(i,i,t)==0); wolffd@0: Vd =(Va(i,i,t)-Ve(i,i,t)) ./ denom; wolffd@0: Verr(t) = max(Vd(:)); wolffd@0: end wolffd@0: figure(6); plot(Verr) wolffd@0: title('max relative Verr') wolffd@0: wolffd@0: for t=1:T wolffd@0: %err(t)=rms(xa(:,t), xe(:,t)); wolffd@0: err(t)=rms(xa(1:end-2,t), xe(1:end-2,t)); % exclude robot wolffd@0: end wolffd@0: figure(5);plot(err) wolffd@0: title('rms mean pos')