wolffd@0: .TH GC 1 "27 March 2008" wolffd@0: .SH NAME wolffd@0: gvgen \- generate graphs wolffd@0: .SH SYNOPSIS wolffd@0: .B gvgen wolffd@0: [ wolffd@0: .B \-d? wolffd@0: ] wolffd@0: [ wolffd@0: .BI -c n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -C x,y wolffd@0: ] wolffd@0: [ wolffd@0: .BI -g [\fBf\fP]x,y wolffd@0: ] wolffd@0: [ wolffd@0: .BI -G [\fBf\fP]x,y wolffd@0: ] wolffd@0: [ wolffd@0: .BI -h n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -k n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -b x,y wolffd@0: ] wolffd@0: [ wolffd@0: .BI -p n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -s n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -S n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -t n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -T x,y wolffd@0: ] wolffd@0: [ wolffd@0: .BI -w n wolffd@0: ] wolffd@0: [ wolffd@0: .BI -o outfile wolffd@0: ] wolffd@0: .SH DESCRIPTION wolffd@0: .B gvgen wolffd@0: generates a variety of simple, regularly-structured abstract wolffd@0: graphs. wolffd@0: .SH OPTIONS wolffd@0: The following options are supported: wolffd@0: .TP wolffd@0: .BI \-c " n" wolffd@0: Generate a cycle with \fIn\fP vertices and edges. wolffd@0: .TP wolffd@0: .BI \-C " x,y" wolffd@0: Generate an \fIx\fP by \fIy\fP cylinder. wolffd@0: This will have \fIx*y\fP vertices and wolffd@0: \fI2*x*y - y\fP edges. wolffd@0: .TP wolffd@0: .BI \-g " [\fBf\fP]x,y" wolffd@0: Generate an \fIx\fP by \fIy\fP grid. wolffd@0: If \fBf\fP is given, the grid is folded, with an edge wolffd@0: attaching each pair of opposing corner vertices. wolffd@0: This will have \fIx*y\fP vertices and wolffd@0: \fI2*x*y - y - x\fP edges if unfolded and wolffd@0: \fI2*x*y - y - x + 2\fP edges if folded. wolffd@0: .TP wolffd@0: .BI \-G " [\fBf\fP]x,y" wolffd@0: Generate an \fIx\fP by \fIy\fP partial grid. wolffd@0: If \fBf\fP is given, the grid is folded, with an edge wolffd@0: attaching each pair of opposing corner vertices. wolffd@0: This will have \fIx*y\fP vertices. wolffd@0: .TP wolffd@0: .BI \-h " n" wolffd@0: Generate a hypercube of degree \fIn\fP. wolffd@0: This will have \fI2^n\fP vertices and \fIn*2^(n-1)\fP edges. wolffd@0: .TP wolffd@0: .BI \-k " n" wolffd@0: Generate a complete graph on \fIn\fP vertices with wolffd@0: \fIn*(n-1)/2\fP edges. wolffd@0: .TP wolffd@0: .BI \-b " x,y" wolffd@0: Generate a complete \fIx\fP by \fIy\fP bipartite graph. wolffd@0: This will have \fIx+y\fP vertices and wolffd@0: \fIx*y\fP edges. wolffd@0: .TP wolffd@0: .BI \-p " n" wolffd@0: Generate a path on \fIn\fP vertices. wolffd@0: This will have \fIn-1\fP edges. wolffd@0: .TP wolffd@0: .BI \-s " n" wolffd@0: Generate a star on \fIn\fP vertices. wolffd@0: This will have \fIn-1\fP edges. wolffd@0: .TP wolffd@0: .BI \-S " n" wolffd@0: Generate a Sierpinski graph of order \fIn\fP. wolffd@0: This will have \fI3*(3^(n-1) - 1)/2\fP vertices and wolffd@0: \fI3^n\fP edges. wolffd@0: .TP wolffd@0: .BI \-t " n" wolffd@0: Generate a binary tree of height \fIn\fP. wolffd@0: This will have \fI2^n-1\fP vertices and wolffd@0: \fI2^n-2\fP edges. wolffd@0: .TP wolffd@0: .BI \-T " x,y" wolffd@0: Generate an \fIx\fP by \fIy\fP torus. wolffd@0: This will have \fIx*y\fP vertices and wolffd@0: \fI2*x*y\fP edges. wolffd@0: .TP wolffd@0: .BI \-w " n" wolffd@0: Generate a path on \fIn\fP vertices. wolffd@0: This will have \fIn-1\fP edges. wolffd@0: .TP wolffd@0: .BI \-o " outfile" wolffd@0: If specified, the generated graph is written into the file wolffd@0: .I outfile. wolffd@0: Otherwise, the graph is written to standard out. wolffd@0: .TP wolffd@0: .B \-d wolffd@0: Make the generated graph directed. wolffd@0: .TP wolffd@0: .B \-? wolffd@0: Print usage information. wolffd@0: .SH "EXIT STATUS" wolffd@0: .B gvgen wolffd@0: exits with 0 on successful completion, wolffd@0: and exits with 1 if given an ill-formed or incorrect flag, wolffd@0: or if the specified output file could not be opened. wolffd@0: .SH AUTHOR wolffd@0: Emden R. Gansner wolffd@0: .SH "SEE ALSO" wolffd@0: gc(1), acyclic(1), gvpr(1), gvcolor(1), ccomps(1), sccmap(1), tred(1), libgraph(3)