wolffd@0: function [y, extra, invhess] = rbfevfwd(net, x, t, x_test, invhess) wolffd@0: %RBFEVFWD Forward propagation with evidence for RBF wolffd@0: % wolffd@0: % Description wolffd@0: % Y = RBFEVFWD(NET, X, T, X_TEST) takes a network data structure NET wolffd@0: % together with the input X and target T training data and input test wolffd@0: % data X_TEST. It returns the normal forward propagation through the wolffd@0: % network Y together with a matrix EXTRA which consists of error bars wolffd@0: % (variance) for a regression problem or moderated outputs for a wolffd@0: % classification problem. wolffd@0: % wolffd@0: % The optional argument (and return value) INVHESS is the inverse of wolffd@0: % the network Hessian computed on the training data inputs and targets. wolffd@0: % Passing it in avoids recomputing it, which can be a significant wolffd@0: % saving for large training sets. wolffd@0: % wolffd@0: % See also wolffd@0: % FEVBAYES wolffd@0: % wolffd@0: wolffd@0: % Copyright (c) Ian T Nabney (1996-2001) wolffd@0: wolffd@0: y = rbffwd(net, x_test); wolffd@0: % RBF outputs must be linear, so just pass them twice (second copy is wolffd@0: % not used wolffd@0: if nargin == 4 wolffd@0: [extra, invhess] = fevbayes(net, y, y, x, t, x_test); wolffd@0: else wolffd@0: [extra, invhess] = fevbayes(net, y, y, x, t, x_test, invhess); wolffd@0: end