wolffd@0: wolffd@0:
wolffd@0:wolffd@0: [var, U, lambda] = pca(x, ppca_dim) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
[var, U, lambda] = ppca(x, ppca_dim)
computes the principal component
wolffd@0: subspace U
of dimension ppca_dim
using a centred
wolffd@0: covariance matrix x
. The variable var
contains
wolffd@0: the off-subspace variance (which is assumed to be spherical), while the
wolffd@0: vector lambda
contains the variances of each of the principal
wolffd@0: components. This is computed using the eigenvalue and eigenvector
wolffd@0: decomposition of x
.
wolffd@0:
wolffd@0: eigdec
, pca
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: