wolffd@0: wolffd@0:
wolffd@0:wolffd@0: demgparewolffd@0: wolffd@0: wolffd@0:
x1
, x2
and
wolffd@0: x3
, and one target variable
wolffd@0: t
. The
wolffd@0: target data is generated by computing sin(2*pi*x1)
and adding Gaussian
wolffd@0: noise, x2 is a copy of x1 with a higher level of added
wolffd@0: noise, and x3 is sampled randomly from a Gaussian distribution.
wolffd@0: A Gaussian Process, is
wolffd@0: trained by optimising the hyperparameters
wolffd@0: using the scaled conjugate gradient algorithm. The final values of the
wolffd@0: hyperparameters show that the model successfully identifies the importance
wolffd@0: of each input.
wolffd@0:
wolffd@0: demgp
, gp
, gperr
, gpfwd
, gpgrad
, gpinit
, scg
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: