wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual confmat wolffd@0: wolffd@0: wolffd@0: wolffd@0:

confmat wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Compute a confusion matrix. wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: [C, rate] = confmat(y, t)
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: [C, rate] = confmat(y, t) computes the confusion matrix C wolffd@0: and classification performance rate for the predictions mat{y} wolffd@0: compared with the targets t. The data is assumed to be in a wolffd@0: 1-of-N encoding, unless there is just one column, when it is assumed to wolffd@0: be a 2 class problem with a 0-1 encoding. Each row of y and t wolffd@0: corresponds to a single example. wolffd@0: wolffd@0:

In the confusion matrix, the rows represent the true classes and the wolffd@0: columns the predicted classes. The vector rate has two entries: wolffd@0: the percentage of correct classifications and the total number of wolffd@0: correct classifications. wolffd@0: wolffd@0:

wolffd@0: See Also wolffd@0:

wolffd@0: conffig, demtrain
wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: