wolffd@0: % Fit a piece-wise linear regression model. wolffd@0: % Here is the model wolffd@0: % wolffd@0: % X \ wolffd@0: % | | wolffd@0: % Q | wolffd@0: % | / wolffd@0: % Y wolffd@0: % wolffd@0: % where all arcs point down. wolffd@0: % We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian. wolffd@0: % Q is hidden, X and Y are observed. wolffd@0: wolffd@0: X = 1; wolffd@0: Q = 2; wolffd@0: Y = 3; wolffd@0: dag = zeros(3,3); wolffd@0: dag(X,[Q Y]) = 1; wolffd@0: dag(Q,Y) = 1; wolffd@0: ns = [1 2 1]; % make X and Y scalars, and have 2 experts wolffd@0: dnodes = [2]; wolffd@0: onodes = [1 3]; wolffd@0: bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); wolffd@0: wolffd@0: IRLS_iter = 10; wolffd@0: clamped = 0; wolffd@0: wolffd@0: bnet.CPD{1} = root_CPD(bnet, 1); wolffd@0: wolffd@0: % start with good initial params wolffd@0: w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary wolffd@0: b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary wolffd@0: wolffd@0: mu = [0 0]; wolffd@0: sigma = 1; wolffd@0: Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); wolffd@0: W = [-1 1]; wolffd@0: W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); wolffd@0: wolffd@0: bnet.CPD{2} = softmax_CPD(bnet, 2, w, b, clamped, IRLS_iter); wolffd@0: bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu, 'cov', Sigma, 'weights', W2); wolffd@0: wolffd@0: wolffd@0: engine = jtree_inf_engine(bnet); wolffd@0: wolffd@0: evidence = cell(1,3); wolffd@0: evidence{X} = 0.68; wolffd@0: wolffd@0: engine = enter_evidence(engine, evidence); wolffd@0: wolffd@0: m = marginal_nodes(engine, Y); wolffd@0: m.mu