Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/separationOracle/separationOracleAUC.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [Y, Loss] = separationOracleAUC(q, D, pos, neg, k) % % [Y,Loss] = separationOracleAUC(q, D, pos, neg, k) % % q = index of the query point % D = the current distance matrix % pos = indices of relevant results for q % neg = indices of irrelevant results for q % k = length of the list to consider (unused in AUC) % % Y is a permutation 1:n corresponding to the maximally % violated constraint % % Loss is the loss for Y, in this case, 1-AUC(Y) % First, sort the documents in descending order of W'Phi(q,x) % Phi = - (X(q) - X(x)) * (X(q) - X(x))' % Sort the positive documents ScorePos = - D(pos,q); [Vpos, Ipos] = sort(full(ScorePos'), 'descend'); Ipos = pos(Ipos); % Sort the negative documents ScoreNeg = - D(neg,q); [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend'); Ineg = neg(Ineg); % How many pos and neg documents are we using here? numPos = length(pos); numNeg = length(neg); n = numPos + numNeg; NegsBefore = sum(bsxfun(@lt, Vpos, Vneg' + 0.5),1); % Construct Y from NegsBefore Y = nan * ones(n,1); Y((1:numPos) + NegsBefore) = Ipos; Y(isnan(Y)) = Ineg; % Compute AUC loss for this ranking Loss = 1 - sum(NegsBefore) / (numPos * numNeg * 2); end