Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/regularize/regularizeMKLDOD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function r = regularizeMKLDOD(W, X, gradient) % % r = regularizeMKLDOD(W, X, gradient) % % [d,n,m] = size(X); if gradient r = zeros(m,m,d); for i = 1:m r(i,i,:) = diag(X(:,:,i)); for j = (i+1):m r(i,j,:) = diag(X(:,:,i)) + diag(X(:,:,j)); end end else r = 0; for i = 1:m r = r + squeeze(W(i,i,:))' * diag(X(:,:,i)); for j = (i+1):m r = r + squeeze(W(i,j,:))' * (diag(X(:,:,i)) + diag(X(:,:,j))); end end end end