Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_unit_neighs.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function Ne1 = som_unit_neighs(topol,lattice,shape) %SOM_UNIT_NEIGHS Matrix indicating units in 1-neighborhood for each map unit. % % Ne1 = som_unit_neighs(topol,[lattice],[shape]) % % Ne1 = som_unit_neighs(sTopol); % Ne1 = som_unit_neighs(sMap.topol); % Ne1 = som_unit_neighs([10 4], 'hexa', 'cyl'); % Ne1 = som_unit_neighs(msize, 'rect', 'toroid'); % % Input and output arguments ([]'s are optional): % topol topology of the SOM grid % (struct) topology or map struct % (vector) the 'msize' field of topology struct % [lattice] (string) map lattice, 'rect' by default % [shape] (string) map shape, 'sheet' by default % % Ne1 (matrix, size [munits munits]) a sparse matrix % indicating the map units in 1-neighborhood % by value 1 (note: the unit itself also has value 0) % % For more help, try 'type som_unit_neighs' or check out online documentation. % See also SOM_NEIGHBORHOOD, SOM_UNIT_DISTS, SOM_UNIT_COORDS, SOM_CONNECTION. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_unit_neighs % % PURPOSE % % Find the adjacent (in 1-neighborhood) units for each map unit of a SOM % based on given topology. % % SYNTAX % % Ne1 = som_unit_neighs(sMap); % Ne1 = som_unit_neighs(sM.topol); % Ne1 = som_unit_neighs(msize); % Ne1 = som_unit_neighs(msize,'hexa'); % Ne1 = som_unit_neighs(msize,'rect','toroid'); % % DESCRIPTION % % For each map unit, find the units the distance of which from % the map unit is equal to 1. The distances are calculated % along the map grid. Consider, for example, the case of a 4x3 map. % The unit ('1' to 'C') positions for 'rect' and 'hexa' lattice (and % 'sheet' shape) are depicted below: % % 'rect' lattice 'hexa' lattice % -------------- -------------- % 1 5 9 1 5 9 % 2 6 a 2 6 a % 3 7 b 3 7 b % 4 8 c 4 8 c % % The units in 1-neighborhood (adjacent units) for unit '6' are '2','5','7' % and 'a' in the 'rect' case and '5','2','7','9','a' and 'b' in the 'hexa' % case. The function returns a sparse matrix having value 1 for these units. % Notice that not all units have equal number of neighbors. Unit '1' has only % units '2' and '5' in its 1-neighborhood. % % REQUIRED INPUT ARGUMENTS % % topol Map grid dimensions. % (struct) topology struct or map struct, the topology % (msize, lattice, shape) of the map is taken from % the appropriate fields (see e.g. SOM_SET) % (vector) the vector which gives the size of the map grid % (msize-field of the topology struct). % % OPTIONAL INPUT ARGUMENTS % % lattice (string) The map lattice, either 'rect' or 'hexa'. Default % is 'rect'. 'hexa' can only be used with 1- or % 2-dimensional map grids. % shape (string) The map shape, either 'sheet', 'cyl' or 'toroid'. % Default is 'sheet'. % % OUTPUT ARGUMENTS % % Ne1 (matrix) sparse matrix indicating units in 1-neighborhood % by 1, all others have value 0 (including the unit itself!), % size is [munits munits] % % EXAMPLES % % Simplest case: % Ne1 = som_unit_neighs(sTopol); % Ne1 = som_unit_neighs(sMap.topol); % Ne1 = som_unit_neighs(msize); % Ne1 = som_unit_neighs([10 10]); % % If topology is given as vector, lattice is 'rect' and shape is 'sheet' % by default. To change these, you can use the optional arguments: % Ne1 = som_unit_neighs(msize, 'hexa', 'toroid'); % % The neighbors can also be calculated for high-dimensional grids: % Ne1 = som_unit_neighs([4 4 4 4 4 4]); % % SEE ALSO % % som_neighborhood Calculate N-neighborhoods of map units. % som_unit_coords Calculate grid coordinates. % som_unit_dists Calculate interunit distances. % som_connection Connection matrix. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 141097 % Version 2.0beta juuso 101199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments error(nargchk(1, 3, nargin)); % default values sTopol = som_set('som_topol','lattice','rect'); % topol if isstruct(topol), switch topol.type, case 'som_map', sTopol = topol.topol; case 'som_topol', sTopol = topol; end elseif iscell(topol), for i=1:length(topol), if isnumeric(topol{i}), sTopol.msize = topol{i}; elseif ischar(topol{i}), switch topol{i}, case {'rect','hexa'}, sTopol.lattice = topol{i}; case {'sheet','cyl','toroid'}, sTopol.shape = topol{i}; end end end else sTopol.msize = topol; end if prod(sTopol.msize)==0, error('Map size is 0.'); end % lattice if nargin>1 & ~isempty(lattice) & ~isnan(lattice), sTopol.lattice = lattice; end % shape if nargin>2 & ~isempty(shape) & ~isnan(shape), sTopol.shape = shape; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action % distances between each map unit Ud = som_unit_dists(sTopol); % 1-neighborhood are those units the distance of which is equal to 1 munits = prod(sTopol.msize); Ne1 = sparse(zeros(munits)); for i=1:munits, inds = find(Ud(i,:)<1.01 & Ud(i,:)>0); % allow for rounding error Ne1(i,inds) = 1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%