Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_train_struct.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sTrain = som_train_struct(varargin) %SOM_TRAIN_STRUCT Default values for SOM training parameters. % % sT = som_train_struct([[argID,] value, ...]) % % sTrain = som_train_struct('train',sM,sD); % sTrain = som_train_struct('finetune','data',D); % sTrain = som_train_struct('previous',sT0); % % Input and output arguments ([]'s are optional): % [argID, (string) Several default values depend on other SOM parameters % value] (varies) or on the proporties of a data set. See below for a % a list of required and optional arguments for % different parameters, and well as the list of valid % argIDs and associated values. The values which are % unambiguous can be given without the preceeding argID. % % sT (struct) The training struct. % % Training struct contains values for training and initialization % parameters. These parameters depend on the number of training samples, % phase of training, the training algorithm. % % Here are the valid argument IDs and corresponding values. The values which % are unambiguous (marked with '*') can be given without the preceeding rgID. % 'dim' (scalar) input space dimension % 'dlen' (scalar) length of the training data % 'data' (matrix / struct) the training data % 'munits' (scalar) number of map units % 'msize' (vector) map size % 'previous' (struct) previous training struct can be given in % conjunction with 'finetune' phase (see below) % 'phase' *(string) training phase: 'init', 'train', 'rough' or 'finetune' % 'algorithm' *(string) algorithm to use: 'lininit', 'randinit', 'batch' or 'seq' % 'map' *(struct) If a map struct is given, the last training struct % in '.trainhist' field is used as the previous training % struct. The map size and input space dimension are % extracted from the map struct. % 'sTrain' *(struct) a train struct, the empty fields of which are % filled with sensible values % % For more help, try 'type som_train_struct' or check out online documentation. % See also SOM_SET, SOM_TOPOL_STRUCT, SOM_MAKE. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_train_struct % % PURPOSE % % Default values for SOM training parameters. % % SYNTAX % % sT = som_train_struct('argID',value,...); % sT = som_train_struct(value,...); % % DESCRIPTION % % This function is used to give sensible values for SOM training % parameters and returns a training struct. Often, the parameters % depend on the properties of the map and the training data. These are % given as optional arguments to the function. If a partially filled % train struct is given, its empty fields (field value is [] or '' or % NaN) are supplimented with default values. % % The training struct has a number of fields which depend on each other % and the optional arguments in complex ways. The most important argument % is 'phase' which can be either 'init', 'train', 'rough' or 'finetune'. % % 'init' Map initialization. % 'train' Map training in a onepass operation, as opposed to the % rough-finetune combination. % 'rough' Rough organization of the map: large neighborhood, big % initial value for learning coefficient. Short training. % 'finetune' Finetuning the map after rough organization phase. Small % neighborhood, learning coefficient is small already at % the beginning. Long training. % % The fields of training struct set by this function are listed below. % % '.mask' Basically, a column vector of ones. But if a previous % train or map struct is given, it is copied from there. % '.neigh' Default value is 'gaussian' but if a previous train or map % struct is given, it is copied from there. % '.alpha_type' Default value is 'inv' but if a previous training struct % is given, it is copied from there. % '.alpha_ini' For 'train' and 'rough' phases, this is 0.5, for % 'finetune' it is 0.05. % '.radius_ini' Depends on the previous training operation and the % maximum sidelength of the map ms = max(msize). % if there isn't one, or it is 'randinit', rad_ini = max(1,ms/2) % if it is 'lininit', rad_ini = max(1,ms/8) % otherwise, rad_ini = rad_fin of the previous training % '.radius_fin' Default value is 1, but if the training phase is % 'rough', rad_fin = max(1,rad_ini/4). % '.trainlen' For 'train' phase this is 20 x mpd epochs, for 'rough' % phase 4 x mpd epochs and for 'finetune' 16 x mpd % epochs, where mpd = munits/dlen. If mpd cannot be % calculated, it is set to be = 0.5. In any case, % trainlen is at least one epoch. % '.algorithm' Default training algorithm is 'batch' and default % initialization algorithm is 'lininit'. % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is used. The % valid IDs and corresponding values are listed below. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % % 'dim' (scalar) input space dimension % 'dlen' (scalar) length of the training data % 'data' (matrix / struct) the training data % 'munits' (scalar) number of map units % 'msize' (vector) map size % 'previous' (struct) previous training struct can be given in % conjunction with 'finetune' phase. % 'phase' *(string) training phase: 'init', 'train', 'rough' or 'finetune' % 'algorithm' *(string) algorithm to use: 'lininit', 'randinit', % 'batch' or 'seq' % 'map' *(struct) If a map struc is given, the last training struct % in '.trainhist' field is used as the previous training % struct. The map size and input space dimension are % extracted from the map struct. % 'sTrain' *(struct) a train struct, the empty fields of which are % filled with sensible values % % OUTPUT ARGUMENTS % % sT (struct) The training struct. % % EXAMPLES % % The most important optional argument for the training parameters is % 'phase'. The second most important are 'previous' and/or 'map'. % % To get default initialization parameters, use: % % sTrain = som_train_struct('phase','init'); % or % sTrain = som_train_struct('init'); % % To get default training parameters, use: % % sTrain = som_train_struct('phase','train','data',D,'map',sMap); % or % sTrain = som_train_struct('train','data',D,sMap); % or % sTrain = som_train_struct('train','dlen',dlen, ... % 'msize',sMap.topol.msize,'dim',dim); % % If you want to first rough train and then finetune, do like this: % % sT1 = som_train_struct('rough','dlen',length(D),sMap); % rough training % sT2 = som_train_struct('finetune','previous',sT1); % finetuning % % SEE ALSO % % som_make Initialize and train a map using default parameters. % som_topol_struct Default map topology. % som_randinint Random initialization algorithm. % som_lininit Linear initialization algorithm. % som_seqtrain Sequential training algorithm. % som_batchtrain Batch training algorithm. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 101199 090200 210301 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments % initial default structs sTrain = som_set('som_train'); % initialize optional parameters dlen = NaN; msize = 0; munits = NaN; sTprev = []; dim = NaN; phase = ''; % varargin i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'dim', i=i+1; dim = varargin{i}; case 'dlen', i=i+1; dlen = varargin{i}; case 'msize', i=i+1; msize = varargin{i}; case 'munits', i=i+1; munits = varargin{i}; msize = 0; case 'phase', i=i+1; phase = varargin{i}; case 'algorithm', i=i+1; sTrain.algorithm = varargin{i}; case 'mask', i=i+1; sTrain.mask = varargin{i}; case {'previous','map'}, i=i+1; if strcmp(varargin{i}.type,'som_map'), if length(varargin{i}.trainhist), sTprev = varargin{i}.trainhist(end); msize = varargin{i}.topol.msize; end elseif strcmp(varargin{i}.type,'som_train'), sTprev = varargin{i}; end case 'data', i=i+1; if isstruct(varargin{i}), [dlen dim] = size(varargin{i}.data); else [dlen dim] = size(varargin{i}); end case {'init','train','rough','finetune'}, phase = varargin{i}; case {'lininit','randinit','seq','batch'}, sTrain.algorithm = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}.type, case 'som_train', sT = varargin{i}; if ~isempty(sT.algorithm), sTrain.algorithm = sT.algorithm; end if ~isempty(sT.neigh), sTrain.neigh = sT.neigh; end if ~isempty(sT.mask), sTrain.mask = sT.mask; end if ~isnan(sT.radius_ini), sTrain.radius_ini = sT.radius_ini; end if ~isnan(sT.radius_fin), sTrain.radius_fin = sT.radius_fin; end if ~isnan(sT.alpha_ini), sTrain.alpha_ini = sT.alpha_ini; end if ~isempty(sT.alpha_type), sTrain.alpha_type = sT.alpha_type; end if ~isnan(sT.trainlen), sTrain.trainlen = sT.trainlen; end if ~isempty(sT.data_name), sTrain.data_name = sT.data_name; end if ~isempty(sT.time), sTrain.time = sT.time; end case 'som_map', if strcmp(varargin{i}.type,'som_map'), if length(varargin{i}.trainhist), sTprev = varargin{i}.trainhist(end); msize = varargin{i}.topol.msize; end if ~isempty(varargin{i}.neigh) & isempty(sTrain.neigh), sTrain.neigh = varargin{i}.neigh; end if ~isempty(varargin{i}.mask) & isempty(sTrain.mask), sTrain.mask = varargin{i}.mask; end elseif strcmp(varargin{i}.type,'som_train'), sTprev = varargin{i}; end case 'som_topol', msize = varargin{i}.msize; case 'som_data', [dlen dim] = size(varargin{i}.data); otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_train_struct) Ignoring invalid argument #' num2str(i)]); end i = i+1; end % dim if ~isempty(sTprev) & isnan(dim), dim = length(sTprev.mask); end % mask if isempty(sTrain.mask) & ~isnan(dim), sTrain.mask = ones(dim,1); end % msize, munits if ~msize | isempty(msize), if isnan(munits), msize = [10 10]; else s = round(sqrt(munits)); msize = [s round(munits/s)]; end end munits = prod(msize); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% action % previous training prevalg = ''; if ~isempty(sTprev), if any(findstr(sTprev.algorithm,'init')), prevalg = 'init'; else prevalg = sTprev.algorithm; end end % first determine phase if isempty(phase), switch sTrain.algorithm, case {'lininit','randinit'}, phase = 'init'; case {'batch','seq',''}, if isempty(sTprev), phase = 'rough'; elseif strcmp(prevalg,'init'), phase = 'rough'; else phase = 'finetune'; end otherwise, phase = 'train'; end end % then determine algorithm if isempty(sTrain.algorithm), if strcmp(phase,'init'), sTrain.algorithm = 'lininit'; elseif any(strcmp(prevalg,{'init',''})), sTrain.algorithm = 'batch'; else sTrain.algorithm = sTprev.algorithm; end end % mask if isempty(sTrain.mask), if ~isempty(sTprev), sTrain.mask = sTprev.mask; elseif ~isnan(dim), sTrain.mask = ones(dim,1); end end % neighborhood function if isempty(sTrain.neigh), if ~isempty(sTprev) & ~isempty(sTprev.neigh), sTrain.neigh = sTprev.neigh; else sTrain.neigh = 'gaussian'; end end if strcmp(phase,'init'), sTrain.alpha_ini = NaN; sTrain.alpha_type = ''; sTrain.radius_ini = NaN; sTrain.radius_fin = NaN; sTrain.trainlen = NaN; sTrain.neigh = ''; else mode = [phase, '-', sTrain.algorithm]; % learning rate if isnan(sTrain.alpha_ini), if strcmp(sTrain.algorithm,'batch'), sTrain.alpha_ini = NaN; else switch phase, case {'train','rough'}, sTrain.alpha_ini = 0.5; case 'finetune', sTrain.alpha_ini = 0.05; end end end if isempty(sTrain.alpha_type), if ~isempty(sTprev) & ~isempty(sTprev.alpha_type) ... & ~strcmp(sTrain.algorithm,'batch'), sTrain.alpha_type = sTprev.alpha_type; elseif strcmp(sTrain.algorithm,'seq'), sTrain.alpha_type = 'inv'; end end % radius ms = max(msize); if isnan(sTrain.radius_ini), if isempty(sTprev) | strcmp(sTprev.algorithm,'randinit'), sTrain.radius_ini = max(1,ceil(ms/4)); elseif strcmp(sTprev.algorithm,'lininit') | isnan(sTprev.radius_fin), sTrain.radius_ini = max(1,ceil(ms/8)); else sTrain.radius_ini = sTprev.radius_fin; end end if isnan(sTrain.radius_fin), if strcmp(phase,'rough'), sTrain.radius_fin = max(1,sTrain.radius_ini/4); else sTrain.radius_fin = 1; end end % trainlen if isnan(sTrain.trainlen), mpd = munits/dlen; if isnan(mpd), mpd = 0.5; end switch phase, case 'train', sTrain.trainlen = ceil(50*mpd); case 'rough', sTrain.trainlen = ceil(10*mpd); case 'finetune', sTrain.trainlen = ceil(40*mpd); end sTrain.trainlen = max(1,sTrain.trainlen); end end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%