Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_supervised.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sM = som_supervised(sData,varargin) %SOM_SUPERVISED SOM training which utilizes class information. % % sM = som_supervised(sData, [ArgID, value,...])) % % Input and output arguments ([]'s are optional) % sData (struct) data struct, the class information is % taken from the first column of .labels field % [argID, (string) See below. These are given as % value] (varies) 'argID', value -pairs. % % sMap (struct) map struct % % Here are the argument IDs and corresponding values: % 'munits' (scalar) the preferred number of map units % 'msize' (vector) map grid size % 'mask' (vector) BMU search mask, size dim x 1 % 'name' (string) map name % 'comp_names' (string array / cellstr) component names, size dim x 1 % 'tracking' (scalar) how much to report, default = 1 % The following values are unambiguous and can therefore % be given without the preceeding argument ID: % 'algorithm' (string) training algorithm: 'seq' or 'batch' % 'mapsize' (string) do you want a 'small', 'normal' or 'big' map % Any explicit settings of munits or msize override this. % 'topol' (struct) topology struct % 'som_topol','sTopol' = 'topol' % 'lattice' (string) map lattice, 'hexa' or 'rect' % 'shape' (string) map shape, 'sheet', 'cyl' or 'toroid' % 'neigh' (string) neighborhood function, 'gaussian', 'cutgauss', % 'ep' or 'bubble' % % For more help, try 'type som_supervised', or check out online documentation. % See also SOM_MAKE, SOM_AUTOLABEL. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_supervised % % PURPOSE % % Creates, initializes and trains a supervised SOM by taking the % class-identity into account. % % SYNTAX % % sMap = som_supervised(sData); % sMap = som_supervised(...,'argID',value,...) % sMap = som_make(...,value,...); % % DESCRIPTION % % Creates, initializes and trains a supervised SOM. It constructs the % training data by adding 1-of-N -coded matrix to the original data % based on the class information in the .labels field. The dimension % of vectors after the process is (the old dimension + number of % different classes). In each vector, one of the new components has % value '1' (this depends on the class of the vector), and others '0'. % Calls SOM_MAKE to construct the map. Then the class of each map unit % is determined by taking maximum over these added components, and a % label is give accordingly. Finally, the extra components (the % 1-of-N -coded ones) are removed. % % REFERENCES % % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 160-161. % Kohonen, T., Mäkivasara, K., Saramäki, T., "Phonetic Maps - % Insightful Representation of Phonological Features For % Speech Recognition", In proceedings of International % Conference on Pattern Recognition (ICPR), Montreal, Canada, % 1984, pp. 182-185. % % REQUIRED INPUT ARGUMENTS % % sData The data to use in the training. % (struct) A data struct. '.comp_names' as well as '.name' % is copied to the map. The class information is % taken from the first column of '.labels' field. % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is used. % Here are the argument IDs and corresponding values: % 'munits' (scalar) the preferred number of map units - this may % change a bit, depending on the properties of the data % 'msize' (vector) map grid size % 'mask' (vector) BMU search mask, size dim x 1 % 'name' (string) map name % 'comp_names' (string array / cellstr) component names, size dim x 1 % 'tracking' (scalar) how much to report, default = 1. This parameter % is also passed to the training functions. % The following values are unambiguous and can therefore % be given without the preceeding argument ID: % 'algorithm' (string) training algorithm: 'seq' or 'batch' (default) % 'mapsize' (string) do you want a 'small', 'normal' or 'big' map % Any explicit settings of munits or msize (or topol) % override this. % 'topol' (struct) topology struct % 'som_topol','sTopol' = 'topol' % 'lattice' (string) map lattice, 'hexa' or 'rect' % 'shape' (string) map shape, 'sheet', 'cyl' or 'toroid' % 'neigh' (string) neighborhood function, 'gaussian', 'cutgauss', % 'ep' or 'bubble' % % OUTPUT ARGUMENTS % % sMap (struct) SOM -map struct % % EXAMPLES % % To simply train a map with default parameters: % % sMap = som_supervised(sData); % % With the optional arguments, the initialization and training can be % influenced. To change map size, use 'msize', 'munits' or 'mapsize' % arguments: % % sMap = som_supervised(D,'mapsize','big'); or % sMap = som_supervised(D,'big'); % sMap = som_supervised(D,'munits', 100); % sMap = som_supervised(D,'msize', [20 10]); % % Argument 'algorithm' can be used to switch between 'seq' and 'batch' % algorithms. 'batch' is the default, so to use 'seq' algorithm: % % sMap = som_supervised(D,'algorithm','seq'); or % sMap = som_supervised(D,'seq'); % % The 'tracking' argument can be used to control the amout of reporting % during training. The argument is used in this function, and it is % passed to the training functions. To make the function work silently % set it to 0. % % sMap = som_supervised(D,'tracking',0); % % SEE ALSO % % som_make Create, initialize and train Self-Organizing map. % som_autolabel Label SOM/data set based on another SOM/data set. % Contributed to SOM Toolbox vs2, Feb 2nd, 2000 by Juha Parhankangas % Copyright (c) by Juha Parhankangas % http://www.cis.hut.fi/projects/somtoolbox/ % Juha Parhankangas 050100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D0 = sData.data; [c,n,classlabels] = class2num(sData.labels(:,1)); %%%%%%%% Checking arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isstruct(sData) error('Argument ''sData'' must be a ''som_data'' -struct.'); else data_name = sData.name; comp_names = sData.comp_names; comp_norm = sData.comp_norm; end [dlen,dim] = size(sData.data); % defaults mapsize = ''; sM = som_map_struct(dim+n); sTopol = sM.topol; munits = prod(sTopol.msize); % should be zero mask = sM.mask; name = sM.name; neigh = sM.neigh; tracking = 1; algorithm = 'batch'; %%%% changes to defaults (checking varargin) %%%%%%%%%%%%%%%%%%%%%%%%%%%%% i=1; while i <= length(varargin) argok = 1; if ischar(varargin{i}) switch varargin{i}, % argument IDs case 'mask', i=i+1; mask = varargin{i}; case 'munits', i=i+1; munits = varargin{i}; case 'msize', i=i+1; sTopol.msize = varargin{i}; munits = prod(sTopol.msize); case 'mapsize', i=i+1; mapsize = varargin{i}; case 'name', i=i+1; name = varargin{i}; case 'comp_names', i=i+1; comp_names = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case {'topol','som_topol','sTopol'}, i=i+1; sTopol = varargin{i}; munits = prod(sTopol.msize); case 'neigh', i=i+1; neigh = varargin{i}; case 'tracking', i=i+1; tracking = varargin{i}; case 'algorithm', i=i+1; algorithm = varargin{i}; % unambiguous values case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; case {'gaussian','cutgauss','ep','bubble'}, neigh = varargin{i}; case {'seq','batch'}, algorithm = varargin{i}; case {'small','normal','big'}, mapsize = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_supervised) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end %%%%%%%% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % constructing the training data by adding 1-of-N -coded matrix to the % original data. [dlen,dim] = size(D0); Dc = zeros(dlen,n); for i=1:dlen if c(i) Dc(i,c(i)) = 1; end end D = [D0, Dc]; % initialization and training sD = som_data_struct(D,... 'name',data_name); sM = som_make(sD,... 'mask',mask,... 'munits',munits,... 'name',data_name,... 'tracking',tracking,... 'algorithm',algorithm,... 'mapsize',mapsize,... 'topol',sTopol,... 'neigh',neigh); % add labels for i=1:prod(sM.topol.msize), [dummy,class] = max(sM.codebook(i,dim+[1:n])); sM.labels{i} = classlabels{class}; end %sD.labels = sData.labels; %sM = som_autolabel(sM,sD,'vote'); % remove extra components and modify map -struct sM.codebook = sM.codebook(:,1:dim); sM.mask = sM.mask(1:dim); sM.comp_names = sData.comp_names; sM.comp_norm = sData.comp_norm; % remove extras from sM.trainhist for i=1:length(sM.trainhist) if sM.trainhist(i).mask sM.trainhist(i).mask = sM.trainhist(i).mask(1:dim); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [numbers, n, names] = class2num(class) names = {}; numbers = zeros(length(class),1); for i=1:length(class) if ~isempty(class{i}) & ~any(strcmp(class{i},names)) names=cat(1,names,class(i)); end end n=length(names); tmp_numbers = (1:n)'; for i=1:length(class) if ~isempty(class{i}) numbers(i,1) = find(strcmp(class{i},names)); end end