Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_prototrain.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [sM,sTrain] = som_prototrain(sM, D) %SOM_PROTOTRAIN Use sequential algorithm to train the Self-Organizing Map. % % [sM,sT] = som_prototrain(sM, D) % % sM = som_prototrain(sM,D); % % Input and output arguments: % sM (struct) map struct, the trained and updated map is returned % (matrix) codebook matrix of a self-organizing map % size munits x dim or msize(1) x ... x msize(k) x dim % The trained map codebook is returned. % D (struct) training data; data struct % (matrix) training data, size dlen x dim % % This function is otherwise just like SOM_SEQTRAIN except that % the implementation of the sequential training algorithm is very % straightforward (and slower). This should make it easy for you % to modify the algorithm, if you want to. % % For help on input and output parameters, try % 'type som_prototrain' or check out the help for SOM_SEQTRAIN. % See also SOM_SEQTRAIN, SOM_BATCHTRAIN. % Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 080200 130300 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check input arguments % map struct_mode = isstruct(sM); if struct_mode, M = sM.codebook; sTopol = sM.topol; mask = sM.mask; msize = sTopol.msize; neigh = sM.neigh; else M = sM; orig_size = size(M); if ndims(sM) > 2, si = size(sM); dim = si(end); msize = si(1:end-1); M = reshape(sM,[prod(msize) dim]); else msize = [orig_size(1) 1]; dim = orig_size(2); end sM = som_map_struct(dim,'msize',msize); sTopol = sM.topol; mask = ones(dim,1); neigh = 'gaussian'; end [munits dim] = size(M); % data if isstruct(D), data_name = D.name; D = D.data; else data_name = inputname(2); end D = D(find(sum(isnan(D),2) < dim),:); % remove empty vectors from the data [dlen ddim] = size(D); % check input dimension if dim ~= ddim, error('Map and data input space dimensions disagree.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialize (these are default values, change as you will) % training length trainlen = 20*dlen; % 20 epochs by default % neighborhood radius radius_type = 'linear'; rini = max(msize)/2; rfin = 1; % learning rate alpha_type = 'inv'; alpha_ini = 0.2; % initialize random number generator rand('state',sum(100*clock)); % tracking start = clock; trackstep = 100; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action Ud = som_unit_dists(sTopol); % distance between map units on the grid mu_x_1 = ones(munits,1); % this is used pretty often for t = 1:trainlen, %% find BMU ind = ceil(dlen*rand(1)+eps); % select one vector x = D(ind,:); % pick it up known = ~isnan(x); % its known components Dx = M(:,known) - x(mu_x_1,known); % each map unit minus the vector dist2 = (Dx.^2)*mask(known); % squared distances [qerr bmu] = min(dist2); % find BMU %% neighborhood switch radius_type, % radius case 'linear', r = rini+(rfin-rini)*(t-1)/(trainlen-1); end if ~r, r=eps; end % zero neighborhood radius may cause div-by-zero error switch neigh, % neighborhood function case 'bubble', h = (Ud(:,bmu) <= r); case 'gaussian', h = exp(-(Ud(:,bmu).^2)/(2*r*r)); case 'cutgauss', h = exp(-(Ud(:,bmu).^2)/(2*r*r)) .* (Ud(:,bmu) <= r); case 'ep', h = (1 - (Ud(:,bmu).^2)/(r*r)) .* (Ud(:,bmu) <= r); end %% learning rate switch alpha_type, case 'linear', a = (1-t/trainlen)*alpha_ini; case 'inv', a = alpha_ini / (1 + 99*(t-1)/(trainlen-1)); case 'power', a = alpha_ini * (0.005/alpha_ini)^((t-1)/trainlen); end %% update M(:,known) = M(:,known) - a*h(:,ones(sum(known),1)).*Dx; %% tracking if t==1 | ~rem(t,trackstep), elap_t = etime(clock,start); tot_t = elap_t*trainlen/t; fprintf(1,'\rTraining: %3.0f/ %3.0f s',elap_t,tot_t) end end; % for t = 1:trainlen fprintf(1,'\n'); % outputs sTrain = som_set('som_train','algorithm','proto',... 'data_name',data_name,... 'neigh',neigh,... 'mask',mask,... 'radius_ini',rini,... 'radius_fin',rfin,... 'alpha_ini',alpha_ini,... 'alpha_type',alpha_type,... 'trainlen',trainlen,... 'time',datestr(now,0)); if struct_mode, sM = som_set(sM,'codebook',M,'mask',mask,'neigh',neigh); sM.trainhist(end+1) = sTrain; else sM = reshape(M,orig_size); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%